Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.
With the launch of the Sentinel-5 Precursor (S-5P, lifted-off on 13 October 2017), Sentinel-4 (S-4) and Sentinel-5 (S-5)(from 2021 and 2023 onwards, respectively) operational missions of the ESA/EU Copernicus program, a massive amount of atmospheric composition data with unprecedented quality will become available from geostationary (GEO) and low Earth orbit (LEO) observations. Enhanced observational capabilities are expected to foster deeper insight than ever before on key issues relevant for air quality, stratospheric ozone, solar radiation, and climate. A major potential strength of the Sentinel observations lies in the exploitation of complementary information that originates from simultaneous and independent satellite measurements of the same air mass. The core purpose of the AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) project is to investigate this exploitation from a novel approach for merging data acquired in different spectral regions from on board the GEO and LEO platforms. A data processing chain is implemented and tested on synthetic observations. A new data algorithm combines the ultraviolet, visible and thermal infrared ozone products into S-4 and S-5(P) fused profiles. These fused products are then ingested into state-of-the-art data assimilation systems to obtain a unique ozone profile in analyses and forecasts mode. A comparative evaluation and validation of fused products assimilation versus the assimilation of the operational products will seek to demonstrate the improvements achieved by the proposed approach. This contribution provides a first general overview of the project, and discusses both the challenges of developing a technological infrastructure for implementing the AURORA concept, and the potential for applications of AURORA derived products, such as tropospheric ozone and UV surface radiation, in sectors such as air quality monitoring and health.
A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.