A new series of amphiphilic polymers (amphipols) with varied molecular characteristics was prepared, and their properties in aqueous media were examined by static and dynamic light scattering techniques. These polymers are short poly(sodium methacrylate) chains of various molecular weights and tacticities, modified with different degrees of n-octylamine as copolymers of two distinct hydrophobe distribution sequences (random vs multiblocky). To synthesize the parent poly(methacrylic acid) (PMAA) prior to hydrophobic modification, tert-butyl methacrylate was polymerized under the controlled conditions of atom transfer radical polymerization (ATRP) to yield after deprotection the syndiotactic-rich PMAA of targeted molar masses (12-28 kg mol -1 ) and low polydispersity indexes (1.08-1.19). Under similar conditions of ATRP and deprotection, a well-defined isotactic-rich PMAA was obtained from triphenylmethyl methacrylate. The amphipol carrying octyl side chains randomly distributed along the polymer main chain was produced by coupling the parent PMAA with n-octylamine in an organic medium (N-methylpyrrolidone). In contrast, the coupling reaction of PMAA in aqueous media, with the n-octylamine solubilized by sodium dodecyl sulfate, gave the amphipols bearing octyl groups distributed in a multiblocky fashion. The highly controlled hydrophobe distribution sequence and polymer tacticity were confirmed by 1 H and 13 C NMR spectroscopic techniques. All polymers in aqueous solutions form nanoparticles with the structure strongly determined by the polymer microstructure and composition. In the case of random graft amphipol, the polymer self-assembles and preferentially forms small aggregates of 1-2 polymer chains on average with a hydrodynamic radius of ∼3 nm. In cases of the multiblocky graft amphipols, well-defined nanoscaled self-assemblies are formed but from multiple polymer chains (aggregation number ) ∼17), with a drastic increase in the hydrodynamic radius (∼13 nm). Comparing to the effects due solely to the hydrophobe distribution sequence, the increments in structural parameters of the amphipol self-assemblies are only slightly enhanced when concurrently improving the polymer isotacticity or increasing the polymer molar mass. All results point to the critical impact of hydrophobe distribution sequence on the self-assembly of methacrylate-based amphipols in aqueous solutions.
Two ways to obtain aliphatic polyesters (PEs) from dimethylketene and acetaldehyde were investigated. On the one hand, a direct anionic copolymerization was carried out in toluene at À60 C. The resulting polymer was mainly composed of PE units. On the other hand, a two-step process involving the synthesis of 3,3,4-trimethyl-2-oxetanone by [2þ2] cycloaddition, followed by its ring-opening polymerization, with various initiators and solvents, led to the expected PE. Molecular weights up to 9000 g mol À1 (measured by nuclear magnetic resonance (NMR)), with narrow polydispersity around 1.2, were obtained. These polymers were found stable up to 274 C under nitrogen and a broad and complex endothermic peak attributed to crystallinity was observed near 139 C by differential scanning calorimetry (DSC). The crystallinity, measured by X-ray diffraction, was close to 0.45.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.