We consider an Yb-doped double-clad fiber laser in a unidirectional ring cavity containing a polarizer placed between two half-wave plates. Depending on the orientation of the phase plates, the laser operates in continuous, Qswitch, mode-lock or unstable self-pulsing regime. An experimental study of the stability of the mode locking regime is realized versus the orientation of the half-wave plates. A model for the stability of self-mode-locking and cw operation is developed starting from two coupled nonlinear Schrödinger equations in a gain medium. The model is reduced to a master equation in which the coefficients are explicitly dependent on the orientation angles of the phase plates. Analytical solutions are given together with their stability versus the angles.
Snowflake growth provides a fascinating example of spontaneous pattern formation in nature. Attempts to understand this phenomenon have led to important insights in non-equilibrium dynamics observed in various active scientific fields, ranging from pattern formation in physical and chemical systems, to self-assembly problems in biology. Yet, very few models currently succeed in reproducing the diversity of snowflake forms in three dimensions, and the link between model parameters and thermodynamic quantities is not established. Here, we report a modified phase field model that describes the subtlety of the ice vapour phase transition, through anisotropic water molecules attachment and condensation, surface diffusion, and strong anisotropic surface tension, that guarantee the anisotropy, faceting and dendritic growth of snowflakes. We demonstrate that this model reproduces the growth dynamics of the most challenging morphologies of snowflakes from the Nakaya diagram. We find that the growth dynamics of snow crystals matches the selection theory, consistently with previous experimental observations. npj Computational Materials (2017) 3:15 ;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.