The chromosomal translocation products AML1-ETO and PML-RARalpha contribute to the pathogenesis of leukemias. Here, we demonstrate that both AML1-ETO and PML-RARalpha are degraded by the ubiquitin-proteasome system and that their turnover critically depends on the E2-conjugase UbcH8 and the E3-ligase SIAH-1. Contrary to its role in HDAC2 degradation, the E3-ligase RLIM does not target AML1-ETO and PML-RARalpha for ubiquitin-dependent elimination. RLIM rather is a substrate of SIAH-1, which indicates that these E3-ligases operate in a hierarchical order. Remarkably, proteasomal degradation of leukemia fusion proteins, in addition to the block of histone deacetylase (HDAC) enzymatic activity is a consequence of HDAC-inhibitor treatment. The former requires the induction of UbcH8 expression and each of these processes might be beneficial for leukemia treatment. Our observations shed light on the mechanism determining the interplay between E2-conjugases, E3-ligases, and their substrates and suggest a strategy for utilizing the ubiquitylation machinery in a therapeutic setting.
The class III receptor tyrosine kinase FMS-like tyrosine kinase 3 (FLT3) regulates normal hematopoiesis and immunological functions. Nonetheless, constitutively active mutant FLT3 (FLT3-ITD) causally contributes to transformation and is associated with poor prognosis of acute myeloid leukemia (AML) patients. Histone deacetylase inhibitors (HDACi) can counteract deregulated gene expression profiles and decrease oncoprotein stability, which renders them candidate drugs for AML treatment. However, these drugs have pleiotropic effects and it is often unclear how they correct oncogenic transcriptomes and proteomes. We report here that treatment of AML cells with the HDACi LBH589 induces the ubiquitin-conjugating enzyme UBCH8 and degradation of FLT3-ITD. Gain-and loss-offunction approaches show that UBCH8 and the ubiquitin-ligase SIAH1 physically interact with and target FLT3-ITD for proteasomal degradation. These ubiquitinylating enzymes though have a significantly lesser effect on wild-type FLT3. Furthermore, physiological and pharmacological stimulation of FLT3 phosphorylation, inhibition of FLT3-ITD autophosphorylation and analysis of kinase-inactive FLT3-ITD revealed that tyrosine phosphorylation determines degradation of FLT3 and FLT3-ITD by the proteasome. These results provide novel insights into antileukemic activities of HDACi and position UBCH8, which have been implicated primarily in processes in the nucleus, as a previously unrecognized important modulator of FLT3-ITD stability and leukemic cell survival.
Activated Cdc42-associated kinase 1 (ACK1) is a nonreceptor tyrosine kinase linked to cellular transformation. The aberrant regulation of ACK1 promotes tumor progression and metastasis. Therefore, ACK1 is regarded as a valid target in cancer therapy. Seven in absentia homolog (SIAH) ubiquitin ligases facilitate substrate ubiquitinylation that targets proteins to the proteasomal degradation pathway. Here we report that ACK1 and SIAH1 from Homo sapiens interact in a yeast two-hybrid screen. Protein–protein interaction studies and protein degradation analyses using deletion and point mutants of ACK1 verify that SIAH1 and the related SIAH2 interact with ACK1. The association between SIAHs and ACK1 depends on the integrity of a highly conserved SIAH-binding motif located in the far C-terminus of ACK1. Furthermore, we demonstrate that the interaction of ACK1 with SIAH1 and the induction of proteasomal degradation of ACK1 by SIAH1 are independent of ACK1’s kinase activity. Chemical inhibitors blocking proteasomal activity corroborate that SIAH1 and SIAH2 destabilize the ACK1 protein by inducing its proteasomal turnover. This mechanism apparently differs from the lysosomal pathway targeting ACK1 after stimulation with the epidermal growth factor. Our data also show that ACK1, but not ACK1 mutants lacking the SIAH binding motif, has a discernable negative effect on SIAH levels. Additionally, knockdown approaches targeting the SIAH2 mRNA uncover specifically that the induction of SIAH2 expression, by hormonally-induced estrogen receptor (ER) activation, decreases the levels of ACK1 in luminal human breast cancer cells. Collectively, our data provide novel insights into the molecular mechanisms modulating ACK1 and they position SIAH ubiquitin ligases as negative regulators of ACK1 in transformed cells.
The Janus tyrosine kinases JAK1-3 and tyrosine kinase-2 (TYK2) are frequently hyperactivated in tumors. In lung cancers JAK1 and JAK2 induce oncogenic signaling through STAT3. A putative role of TYK2 in these tumors has not been reported. Here, we show a previously not recognized TYK2-STAT3 signaling node in lung cancer cells. We reveal that the E3 ubiquitin ligase seven-in-absentia-2 (SIAH2) accelerates the proteasomal degradation of TYK2. This mechanism consequently suppresses the activation of STAT3. In agreement with these data the analysis of primary non-small-cell lung cancer (NSCLC) samples from three patient cohorts revealed that compared to lung adenocarcinoma (ADC), lung squamous cell carcinoma (SCC) show significantly higher levels of SIAH2 and reduced STAT3 phosphorylation levels. Thus, SIAH2 is a novel molecular marker for SCC. We further demonstrate that an activation of the oncologically relevant transcription factor p53 in lung cancer cells induces SIAH2, depletes TYK2, and abrogates the tyrosine phosphorylation of STAT1 and STAT3. This mechanism appears to be different from the inhibition of phosphorylated JAKs through the suppressor of cytokine signaling (SOCS) proteins. Our study may help to identify molecular mechanisms affecting lung carcinogenesis and potential therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.