We present some related families of orthogonal polynomials of a discrete variable and survey some of their applications in the study of (distance-regular) graphs and (completely regular) codes. One of the main peculiarities of such orthogonal systems is their non-standard normalization condition, requiring that the square norm of each polynomial must equal its value at a given point of the mesh. For instance, when they are defined from the spectrum of a graph, one of these families is the system of the predistance polynomials which, in the case of distance-regular graphs, turns out to be the sequence of distance polynomials. The applications range from (quasi-spectral) characterizations of distance-regular graphs, walk-regular graphs, local distance-regularity and completely regular codes, to some results on representation theory.
a b s t r a c tWe investigate when a complete graph K n with some edges deleted is determined by its adjacency spectrum. It is shown to be the case if the deleted edges form a matching, a complete graph K m provided m ≤ n − 2, or a complete bipartite graph. If the edges of a path are deleted we prove that the graph is determined by its generalized spectrum (that is, the spectrum together with the spectrum of the complement). When at most five edges are deleted from K n , there is just one pair of nonisomorphic cospectral graphs. We construct nonisomorphic cospectral graphs (with cospectral complements) for all n if six or more edges are deleted from K n , provided that n is big enough.
A $t$-walk-regular graph is a graph for which the number of walks of given
length between two vertices depends only on the distance between these two
vertices, as long as this distance is at most $t$. Such graphs generalize
distance-regular graphs and $t$-arc-transitive graphs. In this paper, we will
focus on 1- and in particular 2-walk-regular graphs, and study analogues of
certain results that are important for distance regular graphs. We will
generalize Delsarte's clique bound to 1-walk-regular graphs, Godsil's
multiplicity bound and Terwilliger's analysis of the local structure to
2-walk-regular graphs. We will show that 2-walk-regular graphs have a much
richer combinatorial structure than 1-walk-regular graphs, for example by
proving that there are finitely many non-geometric 2-walk-regular graphs with
given smallest eigenvalue and given diameter (a geometric graph is the point
graph of a special partial linear space); a result that is analogous to a
result on distance-regular graphs. Such a result does not hold for
1-walk-regular graphs, as our construction methods will show
A graph is edge-distance-regular when it is distance-regular around each of its edges and it has the same intersection numbers for any edge taken as a root. In this paper we give some (combinatorial and algebraic) proofs of the fact that every edge-distance-regular graph Γ is distance-regular and homogeneous. More precisely, Γ is edge-distance-regular if and only if it is bipartite distance-regular or a generalized odd graph. Also, we obtain the relationships between some of their corresponding parameters, mainly, the distance polynomials and the intersection numbers.Postprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.