During the past century, plastics have become a natural element in our every-day life. Lately however, an awareness about the fossil origin and often non-degradable nature of many plastics is rising. This has resulted in the emergence of some bio-based and/or biodegradable plastics, often produced from renewable resources. One possible candidate for bioplastics production could be found in cellulose. This paper aims at contributing information regarding a cellulose derivative, which could possibly be used in foamed plastics applications. Therefore, the reduction of the chain-length of a methyl ethyl hydroxyethyl cellulose (MEHEC), assessed by size exclusion chromatography, and the effect of chain-length on the foaming behaviour were studied. The foaming was accomplished with a hot-mould technique using aqueous polymer solutions. The generated steam was here used as the blowing agent and important parameters were polymer concentration and solution viscosity. The density of the produced foams was assessed and was in some cases comparable to that of commodity foams. It was found that reducing the chain-length enabled an increase of the initial polymer concentration for the foaming process. This is believed to be beneficial for creating more structurally stable foams of this type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.