Spin-weighted spheroidal harmonics are useful in a variety of physical situations, including light scattering, nuclear modeling, signal processing, electromagnetic wave propagation, black hole perturbation theory in four and higher dimensions, quantum field theory in curved space-time and studies of D-branes. We first review analytic and numerical calculations of their eigenvalues and eigenfunctions in four dimensions, filling gaps in the existing literature when necessary. Then we compute the angular dependence of the spin-weighted spheroidal harmonics corresponding to slowly-damped quasinormal mode frequencies of the Kerr black hole, providing numerical tables and approximate formulas for their scalar products. Finally we present an exhaustive analytic and numerical study of scalar spheroidal harmonics in (n + 4) dimensions.
Spin-weighted spheroidal harmonics are useful in a variety of physical situations, including light scattering, nuclear modeling, signal processing, electromagnetic wave propagation, black hole perturbation theory in four and higher dimensions, quantum field theory in curved space-time and studies of D-branes. We first review analytic and numerical calculations of their eigenvalues and eigenfunctions in four dimensions, filling gaps in the existing literature when necessary. Then we compute the angular dependence of the spin-weighted spheroidal harmonics corresponding to slowly-damped quasinormal mode frequencies of the Kerr black hole, providing numerical tables and approximate formulas for their scalar products. Finally we present an exhaustive analytic and numerical study of scalar spheroidal harmonics in (n + 4) dimensions.
In this work, we study the 'scalar channel' of the emission of Hawking radiation from a (4+n)-dimensional, rotating black hole on the brane. We numerically solve both the radial and angular part of the equation of motion for the scalar field, and determine the exact values of the absorption probability and of the spheroidal harmonics, respectively. With these, we calculate the particle, energy and angular momentum emission rates, as well as the angular variation in the flux and power spectra -a distinctive feature of emission during the spin-down phase of the life of the produced black hole. Our analysis is free from any approximations, with our results being valid for arbitrarily large values of the energy of the emitted particle, angular momentum of the black hole and dimensionality of spacetime. We finally compute the total emissivities for the number of particles, energy and angular momentum and compare their relative behaviour for different values of the parameters of the theory.
The present works complements and expands a previous one, focused on the emission of scalar fields by a (4 + n)-dimensional rotating black hole on the brane, by studying the emission of gauge fields on the brane from a similar black hole. A comprehensive analysis of the particle, energy and angular momentum emission rates is undertaken, for arbitrary angular momentum of the black hole and dimensionality of spacetime. Our analysis reveals the existence of a number of distinct features associated with the emission of spin-1 fields from a rotating black hole on the brane, such as the behaviour and magnitude of the different emission rates, the angular distribution of particles and energy, the relative enhancement compared to the scalar fields, and the magnitude of the superradiance effect. Apart from their theoretical interest, these features can comprise clear signatures of the emission of Hawking radiation from a brane-world black hole during its spin-down phase upon successful detection of this effect during an experiment.
We show that the horizon instability of the extremal Kerr black hole is associated with a singular branch point in the Green function at the superradiant bound frequency. We study generic initial data supported away from the horizon and find an enhanced growth rate due to nonaxisymmetric modes. The growth is controlled by the conformal weight h of each mode. We speculate on connections to near-extremal black holes and holographic duality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.