Heavy metals such as cadmium (Cd), mercury (Hg), lead (Pb), chromium (Cr) and platinum (Pt) are a major environmental and occupational hazard. Unfortunately, these non-essential elements are toxic at very low doses and non-biodegradable with a very long biological half-life. Thus, exposure to heavy metals is potentially harmful. Because of its ability to reabsorb and accumulate divalent metals, the kidney is the first target organ of heavy metal toxicity. The extent of renal damage by heavy metals depends on the nature, the dose, route and duration of exposure. Both acute and chronic intoxication have been demonstrated to cause nephropathies, with various levels of severity ranging from tubular dysfunctions like acquired Fanconi syndrome to severe renal failure leading occasionally to death. Very varied pathways are involved in uptake of heavy metals by the epithelium, depending on the form (free or bound) of the metal and the segment of the nephron where reabsorption occurs (proximal tubule, loop of Henle, distal tubule and terminal segments). In this review, we address the putative uptake pathways involved along the nephron, the mechanisms of intracellular sequestration and detoxification and the nephropathies caused by heavy metals. We also tackle the question of the possible therapeutic means of decreasing the toxic effect of heavy metals by increasing their urinary excretion without affecting the renal uptake of essential trace elements. We have chosen to focus mainly on Cd, Hg and Pb and on in vivo studies.
The eukaryotic initiation factor 5A (eIF5A), which is highly conserved throughout evolution, has the unique characteristic of post-translational activation through hypusination. This modification is catalyzed by two enzymatic steps involving deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Notably, eIF5A may be involved in regulating the lifespan of during long-term hypoxia. Therefore, we investigated the possibility of a link between eIF5A hypusination and cellular resistance to hypoxia/anoxia. Pharmacologic targeting of DHPS by1-guanyl-1,7-diaminoheptane (GC7) or RNA interference-mediated inhibition of DHPS or DOHH induced tolerance to anoxia in immortalized mouse renal proximal cells. Furthermore, GC7 treatment of cells reversibly induced a metabolic shift toward glycolysis as well as mitochondrial remodeling and led to downregulated expression and activity of respiratory chain complexes, features characteristic of mitochondrial silencing. GC7 treatment also attenuated anoxia-induced generation of reactive oxygen species in these cells and in normoxic conditions, decreased the mitochondrial oxygen consumption rate of cultured cells and mice. In rats, intraperitoneal injection of GC7 substantially reduced renal levels of hypusinated eIF5A and protected against ischemia-reperfusion-induced renal injury. Finally, in the preclinical pig kidney transplant model, intravenous injection of GC7 before kidney removal significantly improved graft function recovery and late graft function and reduced interstitial fibrosis after transplant. This unconventional signaling pathway offers an innovative therapeutic target for treating hypoxic-ischemic human diseases and organ transplantation.
The functional properties and the pharmacological profile of the recently cloned cDNA colonic P-ATPase alpha subunit (Crowson, M.S., and Shull, G.E. (1992) J. Biol. Chem. 267, 13740-13748) were investigated by using the Xenopus oocyte expression system. Xenopus oocytes were injected with alpha subunit cRNAs from Bufo marinus bladder or rat distal colon and/or with beta subunit cRNA from B. marinus bladder. Two days after injection, K+ uptake was measured by using 86 Rb+ as a K+ surrogate, and pH measurements were performed by means of ion-selective microelectrodes. Co-injection of alpha and beta subunit cRNAs led to a large increase in 86Rb+ uptake, an intracellular alkalinization, and an extracellular medium acidification, as compared to alpha or beta injection alone. These results indicate that the colonic P-ATPase alpha subunit, like the bladder alpha subunit, acts as a functional H+,K+-ATPase, and that co-expression of alpha and beta subunits is required for the function. External K+ activation of the 86Rb+ uptake had a K1/2 of approximately 440 microM for the bladder isoform (consistent with the previously reported value (Jaisser, F., Horisberger, J.D., Geering, K., and Rossier, B.C. (1993) J. Cell. Biol. 123, 1421-1431) and a K1/2 of approximately 730 microM for the colonic isoform. Sch28080 was ineffective to reduce 86Rb+ uptake whereas ouabain inhibited the activity expressed from rat colon alpha subunit with a Ki of 970 microM when measured at the Vmax of the enzyme. We conclude that, when expressed in Xenopus oocytes, the rat colon P-ATPase alpha subunit encodes a ouabain-sensitive H+,K+-ATPase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.