Members of the archaeal order Methanomassiliicoccales are methanogens mainly associated with animal digestive tracts. However, environmental members remain poorly characterized as no representatives not associated with a host have been cultivated so far. In this study, metabarcoding screening combined with quantitative PCR analyses on a collection of diverse non-host-associated environmental samples revealed that Methanomassiliicoccales were very scarce in most terrestrial and aquatic ecosystems. Relative abundance of Methanomassiliicoccales and substrates/products of methanogenesis were monitored during incubation of environmental slurries. A sediment slurry enriched in Methanomassiliicoccales was obtained from a freshwater sample. It allowed the reconstruction of a high-quality metagenome-assembled genome (MAG) corresponding to a new candidate species, for which we propose the name of Candidatus ‘Methanomassiliicoccus armoricus MXMAG1’. Comparison of the annotated genome of MXMAG1 with the published genomes and MAGs from Methanomassiliicoccales belonging to the 2 known clades (‘free-living’/non-host-associated environmental clade and ‘host-associated’/digestive clade) allowed us to explore the putative physiological traits of Candidatus ‘M. armoricus MXMAG1’. As expected, Ca. ‘Methanomassiliicoccus armoricus MXMAG1’ had the genetic potential to produce methane by reduction of methyl compounds and dihydrogen oxidation. This MAG encodes for several putative physiological and stress response adaptations, including biosynthesis of trehalose (osmotic and temperature regulations), agmatine production (pH regulation), and arsenic detoxication, by reduction and excretion of arsenite, a mechanism that was only present in the ‘free-living’ clade. An analysis of co-occurrence networks carried out on environmental samples and slurries also showed that Methanomassiliicoccales detected in terrestrial and aquatic ecosystems were strongly associated with acetate and dihydrogen producing bacteria commonly found in digestive habitats and which have been reported to form syntrophic relationships with methanogens.
The Kerguelen Islands, located in the southern part of the Indian Ocean, are very isolated geographically. The microbial diversity and communities present on the island, especially associated to geothermal springs, have never been analyzed with high-throughput sequencing methods. In this article, we performed the first metagenomics analysis of microorganisms present in Kerguelen hot springs. From four hot springs, we assembled metagenomes and recovered 42 metagenome-assembled genomes, mostly associated with new putative taxa based on phylogenomic analyses and overall genome relatedness indices. The 42 MAGs were studied in detail and showed putative affiliations to 13 new genomic species and 6 new genera of Bacteria or Archaea according to GTDB. Functional potential of MAGs suggests the presence of thermophiles and hyperthermophiles, as well as heterotrophs and primary producers possibly involved in the sulfur cycle, notably in the oxidation of sulfur compounds. This paper focused on only four of the dozens of hot springs in the Kerguelen Islands and should be considered as a preliminary study of the microorganisms inhabiting the hot springs of these isolated islands. These results show that more efforts should be made towards characterization of Kerguelen Islands ecosystems, as they represent a reservoir of unknown microbial lineages.
The Kerguelen Islands, located in the southern part of the Indian Ocean, are very isolated geographically. They have been the subject of very few microbiological investigations. In particular, their microbial diversity has never been analyzed with high-throughput sequencing methods and no sequencing studies of the genomes of the microbial communities have been performed. In this article we performed the first metagenomics analysis of microorganisms present in Kerguelen hot springs. From four different hot springs, we assembled metagenomes and recovered 42 metagenome-assembled genomes, mostly associated with new taxa. Bacterial and archaeal MAGs were studied in details and showed affiliations to new species, genera, families and orders. Metabolic predictions from MAGs suggest the presence of heterotrophs and primary producers involved in the sulfur cycle. This paper, which focuses on only four of the dozens of hot springs in the Kerguelen Islands, is a preliminary study of the microorganisms, particularly thermophiles, inhabiting the hot springs of these insulated islands. These results show that more efforts should be made to better understand these ecosystems as they represent a reservoir of unknown microbial lineages and potential new metabolic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.