These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.
BackgroundThe ingestion of a high-fat diet (HFD) and the resulting obese state can exert a multitude of stressors on the individual including anxiety and cognitive dysfunction. Though many studies have shown that exercise can alleviate the negative consequences of a HFD using metabolic readouts such as insulin and glucose, a paucity of well-controlled rodent studies have been published on HFD and exercise interactions with regard to behavioral outcomes. This is a critical issue since some individuals assume that HFD-induced behavioral problems such as anxiety and cognitive dysfunction can simply be exercised away. To investigate this, we analyzed mice fed a normal diet (ND), ND with exercise, HFD diet, or HFD with exercise.ResultsWe found that mice on a HFD had robust anxiety phenotypes but this was not rescued by exercise. Conversely, exercise increased cognitive abilities but this was not impacted by the HFD. Given the importance of the gut microbiome in shaping the host state, we used 16S rRNA hypervariable tag sequencing to profile our cohorts and found that HFD massively reshaped the gut microbial community in agreement with numerous published studies. However, exercise alone also caused massive shifts in the gut microbiome at nearly the same magnitude as diet but these changes were surprisingly orthogonal. Additionally, specific bacterial abundances were directly proportional to measures of anxiety or cognition.ConclusionsThus, behavioral domains and the gut microbiome are both impacted by diet and exercise but in unrelated ways. These data have important implications for obesity research aimed at modifications of the gut microbiome and suggest that specific gut microbes could be used as a biomarker for anxiety or cognition or perhaps even targeted for therapy.
Although lifestyle-induced weight loss improves insulin resistance in prediabetic individuals, postprandial hyperinsulinemia is reduced only when a low-GI diet is consumed. In contrast, a high-GI diet impairs pancreatic β cell and intestinal K cell function despite significant weight loss. These findings highlight the important role of the gut in mediating the effects of a low-GI diet on type 2 diabetes risk reduction.
The purpose of this study was to examine whether exercise training reduced inflammation and symptomology in a mouse model of colitis. We hypothesized that moderate forced treadmill running (FTR) or voluntary wheel running (VWR) would reduce colitis symptoms and colon inflammation in response to dextran sodium sulfate (DSS). Male C57Bl/6J mice were randomized to sedentary, moderate intensity FTR (8–12 m/min, 40 min, 6 weeks, 5x/week), or VWR (30 days access to wheels). DSS was given at 2% (w/v) in drinking water over 5 days. Mice discontinued exercise 24 h prior to and during DSS treatment. Colons were harvested on Days 6, 8 and 12 in FTR and Day 8 post-DSS in VWR experiments. Contrary to our hypothesis, we found that moderate FTR exacerbated colitis symptomology and inflammation as measured by significant (p≤0.05) increases in diarrhea and IL-6, IL-1β, IL-17 colon gene expression. We also observed higher mortality (3/10 died vs. 0/10, p = 0.07) in the FTR/DSS group. In contrast, VWR alleviated colitis symptoms and reduced inflammatory gene expression in the colons of DSS-treated mice (p≤0.05). While DSS treatment reduced food/fluid intake and body weight, there was a tendency for FTR to exacerbate, and for VWR to attenuate, this effect. FTR (in the absence of DSS) increased gene expression of the chemokine and antibacterial protein CCL6 suggesting that FTR altered gut homeostasis that may be related to the exaggerated response to DSS. In conclusion, we found that FTR exacerbated, whereas VWR attenuated, symptoms and inflammation in response to DSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.