Expressions of basic emotions (joy, sadness, anger, fear, disgust) can be recognized pan-culturally from the face and it is assumed that these emotions can be recognized from a speaker's voice, regardless of an individual's culture or linguistic ability. Here, we compared how monolingual speakers of Argentine Spanish recognize basic emotions from pseudo-utterances (''nonsense speech'') produced in their native language and in three foreign languages (English, German, Arabic). Results indicated that vocal expressions of basic emotions could be decoded in each language condition at accuracy levels exceeding chance, although Spanish listeners performed significantly better overall in their native language (''in-group advantage''). Our findings argue that the ability to understand vocally-expressed emotions in speech is partly independent of linguistic ability and involves universal principles, although this ability is also shaped by linguistic and cultural variables.
How quickly do listeners recognize emotions from a speaker's voice, and does the time course for recognition vary by emotion type? To address these questions, we adapted the auditory gating paradigm to estimate how much vocal information is needed for listeners to categorize five basic emotions (anger, disgust, fear, sadness, happiness) and neutral utterances produced by male and female speakers of English. Semantically-anomalous pseudo-utterances (e.g., The rivix jolled the silling) conveying each emotion were divided into seven gate intervals according to the number of syllables that listeners heard from sentence onset. Participants (n = 48) judged the emotional meaning of stimuli presented at each gate duration interval, in a successive, blocked presentation format. Analyses looked at how recognition of each emotion evolves as an utterance unfolds and estimated the “identification point” for each emotion. Results showed that anger, sadness, fear, and neutral expressions are recognized more accurately at short gate intervals than happiness, and particularly disgust; however, as speech unfolds, recognition of happiness improves significantly towards the end of the utterance (and fear is recognized more accurately than other emotions). When the gate associated with the emotion identification point of each stimulus was calculated, data indicated that fear (M = 517 ms), sadness (M = 576 ms), and neutral (M = 510 ms) expressions were identified from shorter acoustic events than the other emotions. These data reveal differences in the underlying time course for conscious recognition of basic emotions from vocal expressions, which should be accounted for in studies of emotional speech processing.
This study used event-related brain potentials (ERPs) to compare the time course of emotion processing from non-linguistic vocalizations versus speech prosody, to test whether vocalizations are treated preferentially by the neurocognitive system. Participants passively listened to vocalizations or pseudo-utterances conveying anger, sadness, or happiness as the EEG was recorded. Simultaneous effects of vocal expression type and emotion were analyzed for three ERP components (N100, P200, Late Positive Component). Emotional vocalizations and speech were differentiated very early (N100) and vocalizations elicited stronger, earlier, and more differentiated P200 responses than speech. At later stages (450-700ms), anger vocalizations evoked a stronger late positivity (LPC) than other vocal expressions, which was similar but delayed for angry speech.Individuals with high trait anxiety exhibited early, heightened sensitivity to vocal emotions (particularly vocalizations). These data provide new neurophysiological evidence that vocalizations, as evolutionarily primitive signals, are accorded precedence over speech-embedded emotions in the human voice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.