is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited version published in: https://sam.ensam.eu Handle IDa b s t r a c t CAD modelers enable designers to construct complex 3D shapes with high-level B-Rep operators. This avoids the burden of low level geometric manipulations. However a gap still exists between the shape that the designers have in mind and the way they have to decompose it into a sequence of modeling steps. To bridge this gap, Variational Modeling enables designers to specify constraints the shape must respect. The constraints are converted into an explicit system of mathematical equations (potentially with some inequalities) which the modeler numerically solves. However, most of available programs are 2D sketchers, basically because in higher dimension some constraints may have complex mathematical expressions. This paper introduces a new approach to sketch constrained 3D shapes. The main idea is to replace explicit systems of mathematical equations with (mainly) Computer Graphics routines considered as Black Box Constraints. The obvious difficulty is that the arguments of all routines must have known numerical values. The paper shows how to solve this issue, i.e., how to solve and optimize without equations. The feasibility and promises of this approach are illustrated with the developed DECO (Deformation by Constraints) prototype.
Commission V, WG V/4KEY WORDS: Photogrammetry, 3D acquisition, cultural heritage, low cost solution, web platform
ABSTRACT:In recent years, advances in the fields of photogrammetry and computer vision have produced several solutions for generating 3D reconstruction starting from simple images. Even if the potentialities of the image-based 3D reconstruction approach are nowadays very well-known in terms of reliability, accuracy and flexibility, there is still a lack of low-cost, open-source and automated solutions for collecting mass of archaeological findings, specially if one consider the real (and non theoretical) contextual aspects of a digitization campaign on the field (number of objects to acquire, available time, lighting conditions, equipment transport, budget, etc...) as well as the accuracy requirements for an in-depth shape analysis and classification purpose. In this paper we present a prototype system (integrating hardware and software) for the 3D acquisition, geometric reconstruction, documentation and archiving of large collections of archaeological findings. All the aspects of our approach are based on high-end image-based modeling techniques and designed basing on an accurate analysis of the typical field conditions of an archaeological campaign, as well as on the specific requirements of archaeological finding documentation and analysis. This paper presents all the aspects integrated into the prototype: -a hardware development of a transportable photobooth for the automated image acquisition consisting of a turntable and three DSLR controlled by a microcontroller ; -an automatic image processing pipeline (based on Apero/Micmac) including mask generation, tie-point extraction, bundle adjustment, multi-view stereo correlation, point cloud generation, surface reconstruction ; -a versatile (off-line/on-line) portable database for associating descriptive attributes (archaeological description) to the 3D digitizations on site ; -a platform for data-gathering, archiving and sharing collections of 3D digitizations on the Web. The presentation and the assessment of this prototype is based on an interdisciplinary experience carried out on the study of the Tholos in Delphi within the framework of the CNRS's Eloquentia project and the EFA's archaeological program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.