A B S T R A C TIn this article, we propose a new solar concentrator based on spectral splitting of sunlight. Spectral splitting has the objective to collect different spectra onto spectrally adapted solar cells for a more efficient use of the Sun's spectrum. Its combination with solar concentration makes an alternative to classical technologies. The proposed concentrator is composed of a diffractive/refractive optical element that spectrally splits and focuses the light onto a waveguide. The light is then conducted by total internal reflection towards the two specific solar cells. The optical concept and optimization of each element is presented in this paper. An adaptation for dye sensitized solar cells is performed. A geometrical factor around 5× is reached. Finally, theoretical optical efficiency, the manufacturing process and experimental testing with a collimated Sun simulator are presented.
Although platinum (Pt) is a rare and very expensive material, Pt counter electrodes are still very commonly used for reaching high efficiencies in dye-sensitized solar cells (DSCs). The use of alternative cheaper catalyst materials did not yet yield equivalent efficiencies. In this work, we tried to understand how to reduce the amount of deposited Pt-material and simultaneously deliver higher DSC performances. We systematically compared the properties of Pt-counter electrodes prepared by simple solution deposition methods such as spray-coating, dip-coating, brushing with reference to the Pt-electrodes prepared by sputtering onto fluorine doped-tin oxides (FTOs). The morphological and structural characterizations of the deposited Pt-layers were performed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The composition of Pt-material was quantified using SEM electron dispersive X-ray (EDX) mapping measurements which were further compared with optical transmission measurements. Also contact angle and sheet resistance measurements were performed. By taking Pt-layers composition, morphology and structural factors into account, 9.16% efficient N3 dye based DSCs were assembled. The DSCs were subjected to various opto-electrical characterization techniques like current-voltage (I-V), external quantum efficiency (EQE), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transient photo voltage (TPV) measurements. The obtained experimental data suggest that the Pt counter electrodes prepared by solution deposition methods can also reach high DSC device performances with a consumption of very little amount of Pt material as compared with sputtered Pt-layers. This process also proves that higher DSC performances are not limited to the usage of sputtered Pt-layer as counter electrode.
This paper will present the first prototypes of vortex retarders made of photo-orientable liquid crystals polymers recorded without mechanical action using only polarization holography. Vortex retarders are birefringent plates characterized by a uniform phase retard and a rotation of their fast axis along their center. Liquid crystals are anisotropic molecules possessing birefringent properties. They are locally orientable and their orientation defines the fast axis orientation of the retarder. Their alignment depends on the local orientation of the recording electric field. The superimposition of several polarized beams will be used to shape the electric field to achieve the recording of vortex retarders. The mathematical aspects of the superimposition process, as well as several numerical simulations are exposed. Finally, the first prototypes are presented, characterized and compared to the numerical simulations.
This paper will present a prototype of the first set of vortex retarders made of liquid crystal polymers recorded by polarization holography. Vortex retarders are birefringent plates characterized by a rotation of their fast axis. Liquid crystals possess birefringent properties and they are locally orientable. Their orientation is defined by the perpendicular to the local orientation of the recording field. Polarization holography is a purely optical recording method. It is based on the superimposition of coherent and differently polarized beams. It is used to shape the electric field pattern to enable the recording of vortex retarders. The paper details the mathematical model of the superimposition process. The recording setup is exposed; it is characterized by a nearly common path interferometer. Two sets of measurements allowing the prediction of the retarder's features are presented and compared. Finally, the experimentally recorded retarder is shown, its characteristics are investigated and compared to the predicted ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.