Equestrian sports have been a source of numerous studies throughout the past two decades, however, few scientists have focused on the biomechanical effects, including muscle activation, that the horse has on the rider. Because equitation is a sport of two (the horse-human dyad), we believe there is a need to fill in the knowledge gap in human biomechanics during riding. To investigate the differences between novice and advanced riders at a neuromuscular level we characterized the motor output of a set of riders' key muscles during horse riding. Six recreational riders (24 ± 7 years) and nine professional riders (31 ± 5 years) from the Spanish Classical School of Riding (Lipica) volunteered to take part in this study. Riders' upper body, core and lower limb muscles were monitored and synchronized with inertial data from the left horse's leg at walk, rising trot and canter. We used principal component analysis to extract muscle modes. Three modes were identified in the advanced group whereas five modes were identified in the novice group. From the novice group, one mode united dorsal and ventral muscles of the body (reciprocal mode). Advanced riders showed higher core muscles engagement and better intermuscular coordination. We concluded that advanced horse riding is characterized by an ability to activate muscles contralaterally but not reciprocally (dorsal-ventral contraction). In addition, activating each muscle independently with different levels of activation, and the ability to quickly decrease overall muscle activity is distinctive of advanced riders.
Low back pain (LBP) is a prevailing affliction among recreational and professional horse riders. It lowers performance and distracts from the development of the athlete. A lower incidence of LBP has been observed in the professional riding population despite higher training volumes. This paper aims to describe neuromuscular mechanisms through which advanced and novice riders attenuate the shockwave generated between the horse and rider. Six novice riders (age 24 ± 7 years), nine advanced riders (age 31 ± 5 years) and four horses (age 15 ± 3 years) took part in this study. Surface electromyographic activity of the riders’ trunk was recorded along with inertial data from the horses’ leg, saddle and vertebrae of the riders at walk, trot and canter. Analyses of variances revealed a superior shock attenuating ability of the advanced group (F (1,38) > 5.023, p < 0.03) as well as a higher overall muscle tone (F (1,488) > 9.80, p < 0.02). Cross correlation analyses between shock attenuation and electromyographic activity showed that groups differ mostly in timing rather than the intensity of muscle activation. This finding is of great interest for equestrian athletes and coaches, as it points to a greater importance of training muscular anticipation within the trunk stabilizers rather than overall muscle activation.
Augmented feedback (provided by an external source) has been commonly used by practitioners who are introducing or re-educating movement patterns as a valuable tool of instruction. This study aimed to evaluate the effects of real-time visual kinetic feedback on a horse-riding coaching session. Sixteen riders volunteered to take part in this study. They performed a pre-intervention trial, a 20-min coaching intervention, and a post-intervention trial. The participants randomly received a coaching + feedback intervention or a coaching-only intervention. Forces at the bit and stirrups were recorded at trot and canter. Thirteen inertial measuring units were fitted to the horse's forelimbs and poll, to the stirrups, cantle of the saddle, distal part of the bridles, 1st sacrum vertebrae of the rider (S1), 7th cervical vertebrae of the rider (C7), wrists of the rider, and helmet. The shock attenuation (SA) between helmet:saddle and between C7:S1 and absolute force output were calculated. Changes in SA and force output were compared between groups by two-way repeated measures ANOVA (group*time) both at trot and canter. Statistical significance was set at p < 0.05. SA was significantly lower in both groups and conditions after the intervention. C7:S1 SA was significantly lower in the feedback + coaching group at canter and trot, and helmet:saddle SA was significantly lower in the feedback + coaching group at trot than in the coaching group. A significant increase in force was observed in all the groups on the stirrups at trot and canter, but no significant changes were observed on rein forces. Implementing sports wearables that provide such type of information might be of remarkable benefit for the rider's development and performance.
Background How the modification of saddle fitting parameters in horse riding affects rider’s kinetics is very uncertain. The aim of this study is to describe how manipulating the two main adjustments that an end-user is likely to perform (saddle tilt and stirrup length) affects the biomechanics of a horse rider on a living horse. Methods Eleven showjumpers volunteered to take part in this study. Each participant performed a 120-strides standardization trial at trot and canter, with 0° saddle tilt and stirrup length that would position the rider’s knee at 90°. Following the standardization trial, four interventions were performed, which consisted of 60 strides with 60 mm shorter stirrups, 60 mm longer stirrups, 4° forward tilted saddle and 4° backward tilted saddle. Stirrup and rein tension forces were measured with tension loadcells. A symmetry index was calculated. Acceleration was measured with inertial measuring units at the helmet and back of the rider and shock attenuation was calculated. Results Shortening the stirrups and adjusting saddle tilt significantly enhanced shock attenuation at canter and increased force on the stirrups at trot and canter (p < 0.05). Lowering the stirrups reduced rein tension forces (p = 0.01). At trot, adjusting saddle tilt and stirrup length enhanced symmetry index on the bit (p < 0.05). These results allowed for general guidelines to be proposed, although individualization became an evident part of any saddle setup design due to a high inter-subject variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.