Angiotensin-converting enzyme 2 (ACE2) is a newly discovered carboxy-peptidase responsible for the formation of vasodilatory peptides such as angiotensin-(1-7). We hypothesized that ACE2 is part of the brain renin-angiotensin system, and its expression is regulated by the other elements of this system. ACE2 immunostaining was performed in transgenic mouse brain sections from neuron-specific enolase-AT(1A) (overexpressing AT(1A) receptors), R(+)A(+) (overexpressing angiotensinogen and renin), and control (nontransgenic littermates) mice. Results show that ACE2 staining is widely distributed throughout the brain. Using cell-type-specific antibodies, we observed that ACE2 staining is present in the cytoplasm of neuronal cell bodies but not in glial cells. In the subfornical organ, an area lacking the blood-brain barrier and sensitive to blood-borne angiotensin II, ACE2 was significantly increased in transgenic mice. Interestingly, ACE2 mRNA and protein expression were inversely correlated in the nucleus of tractus solitarius/dorsal motor nucleus of the vagus and the ventrolateral medulla, when comparing transgenic to nontransgenic mice. These results suggest that ACE2 is localized to the cytoplasm of neuronal cells in the brain and that ACE2 levels appear highly regulated by other components of the renin-angiotensin system, confirming its involvement in this system. Moreover, ACE2 expression in brain structures involved in the control of cardiovascular function suggests that the carboxypeptidase may have a role in the central regulation of blood pressure and diseases involving the autonomic nervous system, such as hypertension.
Increased angiotensin II signaling in the brain has been shown to play a critical role in the excessive sympathoexcitation and development of heart failure (HF) after myocardial infarction (MI). We have recently demonstrated that reactive oxygen species mediate the actions of angiotensin II in the brain. In this study, we tested the hypothesis that increased redox signaling in central cardiovascular control regions is a key mechanism in the neurocardiovascular dysregulation that follows MI. Ligation of the left coronary artery induced a large MI and subsequent HF in adult C57BL/6 mice, as demonstrated by cardiac hypertrophy, hydrothorax, and ascites. Immunohistochemical analysis of Fos, a marker of neuronal activation, revealed a significant increase in the number of Fos-positive neurons in the paraventricular nucleus and supraoptic nucleus at 2 and 4 weeks after MI compared with sham mice. Intracerebroventricular injection of an adenoviral vector encoding superoxide dismutase (Ad-Cu/ZnSOD) caused a significant decrease in the number of Fos-positive neurons in the paraventricular nucleus and supraoptic nucleus at 2 weeks after MI compared with mice receiving either saline or a control vector (Ad-LacZ). There was also a diminished role of sympathetic drive in post-MI mice treated centrally with Ad-Cu/ZnSOD, as demonstrated by significantly attenuated falls in heart rate and mean arterial pressure to the ganglionic blocker hexamethonium and decreased urinary norepinephrine levels in these mice compared with Ad-LacZ-treated MI mice. These results suggest that superoxide plays a key role in the central activation and sympathetic hyperactivity after MI in mice and that oxygen radicals in the brain may be important new targets for therapeutic treatment of heart failure.
Dysregulation in central nervous system (CNS) signaling that results in chronic sympathetic hyperactivity is now recognized to play a critical role in the pathogenesis of heart failure (HF) following myocardial infarction (MI). We recently demonstrated that adenovirus-mediated gene transfer of cytoplasmic superoxide dismutase (Ad-Cu/ZnSOD) to forebrain circumventricular organs, unique sensory structures that lack a blood-brain barrier and link peripheral blood-borne signals to central nervous system cardiovascular circuits, inhibits both the MI-induced activation of these central signaling pathways and the accompanying sympathoexcitation. Here, we tested the hypothesis that this forebrain-targeted reduction in oxidative stress translates into amelioration of the post-MI decline in myocardial function and increase in mortality. Adult C57BL/6 mice underwent left coronary artery ligation or sham surgery along with forebrain-targeted gene transfer of Ad-Cu/ZnSOD or a control vector. The results demonstrate marked MI-induced increases in superoxide radical formation in one of these forebrain regions, the subfornical organ (SFO). Ad-Cu/ZnSOD targeted to this region abolished the increased superoxide levels and led to significantly improved myocardial function compared with control vector-treated mice. This was accompanied by diminished levels of cardiomyocyte apoptosis in the Ad-Cu/ZnSOD but not the control vector-treated group. These effects of superoxide scavenging with Ad-Cu/ZnSOD in the forebrain paralleled increased post-MI survival rates compared with controls. This suggests that oxidative stress in the SFO plays a critical role in the deterioration of cardiac function following MI and underscores the promise of CNS-targeted antioxidant therapy for the treatment of MI-induced HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.