The performance of methods for predicting protein-protein interactions at the atomic scale is assessed by evaluating blind predictions performed during 2005-2007 as part of Rounds 6-12 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). These Rounds also included a new scoring experiment, where a larger set of models contributed by the predictors was made available to groups developing scoring functions. These groups scored the uploaded set and submitted their own best models for assessment. The structures of nine protein complexes including one homodimer were used as targets. These targets represent biologically relevant interactions involved in gene expression, signal transduction, RNA, or protein processing and membrane maintenance. For all the targets except one, predictions started from the experimentally determined structures of the free (unbound) components or from models derived by homology, making it mandatory for docking methods to model the conformational changes that often accompany association. In total, 63 groups and eight automatic servers, a substantial increase from previous years, submitted docking predictions, of which 1994 were evaluated here. Fifteen groups submitted 305 models for five targets in the scoring experiment. Assessment of the predictions reveals that 31 different groups produced models of acceptable and medium accuracy-but only one high accuracy submission-for all the targets, except the homodimer. In the latter, none of the docking procedures reproduced the large conformational adjustment required for correct assembly, underscoring yet again that handling protein flexibility remains a major challenge. In the scoring experiment, a large fraction of the groups attained the set goal of singling out the correct association modes from incorrect solutions in the limited ensembles of contributed models. But in general they seemed unable to identify the best models, indicating that current scoring methods are probably not sensitive enough. With the increased focus on protein assemblies, in particular by structural genomics efforts, the growing community of CAPRI predictors is engaged more actively than ever in the development of better scoring functions and means of modeling conformational flexibility, which hold promise for much progress in the future.
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional (3D) structure is reassessed by evaluating blind predictions, performed during 2003-2004 as part of Rounds 3-5 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Ten newly determined structures of protein-protein complexes were used as targets for these rounds. They comprised 2 enzyme-inhibitor complexes, 2 antigen-antibody complexes, 2 complexes involved in cellular signaling, 2 homo-oligomers, and a complex between 2 components of the bacterial cellulosome. For most targets, the predictors were given the experimental structures of 1 unbound and 1 bound component, with the latter in a random orientation. For some, the structure of the free component was derived from that of a related protein, requiring the use of homology modeling. In some of the targets, significant differences in conformation were displayed between the bound and unbound components, representing a major challenge for the docking procedures. For 1 target, predictions could not go to completion. In total, 1866 predictions submitted by 30 groups were evaluated. Over one-third of these groups applied completely novel docking algorithms and scoring functions, with several of them specifically addressing the challenge of dealing with side-chain and backbone flexibility. The quality of the predicted interactions was evaluated by comparison to the experimental structures of the targets, made available for the evaluation, using the well-agreed-upon criteria used previously. Twenty-four groups, which for the first time included an automatic Web server, produced predictions ranking from acceptable to highly accurate for all targets, including those where the structures of the bound and unbound forms differed substantially. These results and a brief survey of the methods used by participants of CAPRI Rounds 3-5 suggest that genuine progress in the performance of docking methods is being achieved, with CAPRI acting as the catalyst.
Protein docking algorithms are assessed by evaluating blind predictions performed during 2007-2009 in Rounds 13-19 of the community-wide experiment on critical assessment of predicted interactions (CAPRI). We evaluated the ability of these algorithms to sample docking poses and to single out specific association modes in 14 targets, representing 11 distinct protein complexes. These complexes play important biological roles in RNA maturation, G-protein signal processing, and enzyme inhibition and function. One target involved protein-RNA interactions not previously considered in CAPRI, several others were hetero-oligomers, or featured multiple interfaces between the same protein pair. For most targets, predictions started from the experimentally determined structures of the free (unbound) components, or from models built from known structures of related or similar proteins. To succeed they therefore needed to account for conformational changes and model inaccuracies. In total, 64 groups and 12 web-servers submitted docking predictions of which 4420 were evaluated. Overall our assessment reveals that 67% of the groups, more than ever before, produced acceptable models or better for at least one target, with many groups submitting multiple high- and medium-accuracy models for two to six targets. Forty-one groups including four web-servers participated in the scoring experiment with 1296 evaluated models. Scoring predictions also show signs of progress evidenced from the large proportion of correct models submitted. But singling out the best models remains a challenge, which also adversely affects the ability to correctly rank docking models. With the increased interest in translating abstract protein interaction networks into realistic models of protein assemblies, the growing CAPRI community is actively developing more efficient and reliable docking and scoring methods for everyone to use.
We present the fifth evaluation of docking and related scoring methods used in the community-wide experiment on the Critical Assessment of Predicted Interactions (CAPRI). The evaluation examined predictions submitted for a total of 15 targets in eight CAPRI rounds held during the years 2010-2012. The targets represented one the most diverse set tackled by the CAPRI community so far. They included only 10 "classical" docking and scoring problems. In one of the classical targets, the new challenge was to predict the position of water molecules in the protein-protein interface. The remaining five targets represented other new challenges that involved estimating the relative binding affinity and the effect of point mutations on the stability of designed and natural protein-protein complexes. Although the 10 classical CAPRI targets included two difficult multicomponent systems, and a protein-oligosaccharide complex with which CAPRI participants had little experience, this evaluation indicates that the performance of docking and scoring methods has remained quite robust. More remarkably, we find that automatic docking servers exhibit a significantly improved performance, with some servers now performing on par with predictions done by humans. The performance of CAPRI participants in the new challenges, briefly reviewed here, was mediocre overall, but some groups did relatively well and their approaches suggested ways of improving methods for designing binders and for estimating the free energies of protein assemblies, which should impact the field of protein modeling and design as a whole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.