The antagonistic activity of 46 bacterial strains isolated from Bordeaux vineyards were evaluated against Phaeomoniella chlamydospora, a major grapevine pathogen involved in Esca. The reduction of the necrosis length of stem cuttings ranged between 31.4% and 38.7% for the 8 most efficient strains. Two in planta trials allowed the selection of the two best strains, Bacillus pumilus (S32) and Paenibacillus sp. (S19). Their efficacy was not dependent on application method; co-inoculation, prevention in the wood and soil inoculation were tested. The involvement of antibiosis by the secretion of diffusible and/or volatile compounds in the antagonistic capacity of these two strains was assessed in vitro. Volatile compounds secreted by B. pumilus (S32) and Paenibacillus sp. (S19) were identified by gas chromatography/mass spectroscopy (GC/MS). The volatile compounds 1-octen-3-ol and 2,5-dimethyl pyrazine were obtained commercially and tested, and they showed strong antifungal activity against P. chlamydospora, which suggested that these compounds may play an important role in the bacterial antagonistic activity in planta. Furthermore, the expression of 10 major grapevine defense genes was quantified by real-time polymerase chain reaction, which demonstrated that the two strains significantly affected the grapevine transcripts four days after their application on the plants. High expression levels of different genes associated with P. chlamydospora infection in B. pumilus pre-treated plants suggests that this strain induces systemic resistance in grapevine. For the first time, we demonstrated the ability of two bacterial strains, B. pumilus and Paenibacillus sp., isolated from grapevine wood, to control P. chlamydospora via direct and/or indirect mechanisms.
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
Lecomte, P., Darrieutort, G., Liminana, J.-M., Comont, G., Muruamendiaraz, A., Legorburu, F.-J., Choueiri, E., Jreijiri, F., El Amil, R., and Fermaud, M. 2012. New insights into esca of grapevine: The development of foliar symptoms and their association with xylem discoloration Plant Dis. 96:924-934.A new study on the development of foliar symptoms of esca was carried out from 2004 to 2006 in five mature vineyards in Aquitaine, France. Symptoms were monitored for severity and changes over time. Initial foliar symptoms were characterized by the presence of drying zones or discolorations (reddening or yellowing), which are symptoms that have also been attributed to Black Dead Arm (BDA). Then, the less-severely affected leaves persisted throughout the summer and developed into typical "tiger-stripe" symptoms of esca. The most severely symptomatic leaves fell soon after symptoms appeared. Severely diseased vines showed typical apoplectic or acute forms of esca that did not differ from the severe BDA forms. The appearance of leafsymptomatic vines increased uniformly over time, reaching a maximum incidence by the end of July. A second survey in 41 European and Lebanese vineyards showed that longitudinal discolorations were visible under the bark of 95% of the vines showing foliar esca symptoms. These wood symptoms, also previously attributed to BDA, appeared as xylem orange-brown stripes. Thus, foliar symptoms of esca showed transitory phases which overlapped with some BDA descriptions. Most of these symptoms, in the west-palearctic regions that were investigated, were commonly associated with the presence of one or several xylem discolorations.
Change in relative frequencies of the three main genetic types of Botrytis cinerea (Group I, Group II vacuma, and Group II transposa) were monitored over time from 1998 to 2000 in three Bordeaux vineyards not treated with fungicides. During 2000, Group I isolates, detected mostly at flowering comprised only 2.5% of the entire population. Within Group II, the complementary frequencies of vacuma and transposa isolates differed significantly depending on grapevine phenological stages and organs. Every year and at all sites, including one noble rot site, transposa isolates dominated at every stage, particularly on overwintering canes and at harvest (greater than 86.7% on berries). The complementary frequency of vacuma isolates reached a maximum on senescing floral caps (between 23.5 and 71.4%) and then decreased significantly until harvest on leaves and berries. In pathogenicity tests on grape berries, transposa isolates were significantly more virulent than were vacuma isolates. Mycelial growth rate was negatively correlated with virulence, notably on leaves in transposa and with double resistance to the fungicides carbendazim and vinclozolin. In vacuma, this double resistance was positively correlated with virulence on leaves. Change in the vacuma and transposa frequencies was most likely caused by differences in saprotrophic and pathogenic fitness. Possible interactions between fungicide resistance profiles and fitness are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.