Despite the successful control of crystal phase using template-directed growth, much remains unknown about the underlying mechanisms. Here, we demonstrate that the crystal phase taken by the deposited metal depends on the lateral size of face-centered cubic (fcc)-Pd nanoplate templates with 12 nm plates giving fcc-Ru while 18−26 nm plates result in hexagonal closed-packed (hcp)-Ru. Although Ru overlayers with a metastable fcc-(high in bulk energy) or stable hcp-phase (low in bulk energy) can be epitaxially deposited on the basal planes, the lattice mismatch will lead to jagged hcp-(high in surface energy) and smooth fcc-facets (low in surface energy), respectively, on the side faces. As the proportion of basal and side faces on the nanoplates varies with lateral size, the crystal phase will change depending on the relative contributions from the surface and bulk energies.
We report for the first time that Pd nanocrystals can absorb H via a “single‐phase pathway” when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7‐ and 12‐nm in size are exposed to H atoms, the H‐saturated twin boundaries can divide each particle into 20 smaller single‐crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single‐phase pathway and one can readily obtain PdHx with any x in the range of 0−0.7. When switched to Pd octahedral nanocrystals, the single‐phase pathway is only observed for particles of 7 nm in size. We also establish that the H‐absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H‐absorption behaviors, the PdHx (x = 0–0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation because of the decrease in chemical potential for H atoms in a Pd lattice under tensile strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.