The encoding of high-resolution energy profile datasets from end-users generated by smart electricity meters while maintaining the fidelity of relevant information seems to be one of the backbones of smart electrical markets. In the end-user sphere of smart grids, specific load curves of households can easily be utilized to aggregate detailed information about customer’s daily activities, which would be attractive for cyber attacks. Based on a dataset measured by a smart meter installed in a German household, this paper integrates two complementary approaches to encrypt load profile datasets. On the one hand, the paper explains an integration of a lossy compression and classification technique, which is usable for individual energy consumption profiles of households. On the other hand, a perturbation approach with the Gaussian distribution is used to enhance the safety of a large amount of privacy profiles. By this complete workflow, involving the compression and perturbation, the developed framework sufficiently cut off the chance of de-noising attacks on private data and implement an additional, easy-to-handle layer of data security.
This paper presents two numerical methods to compute quickly radiated emissions of a cable linking a power converter and a motor. 3D model is not built to be compliant with industrial process (short time development). The field is directly deduced (thanks to Matlab programs) from the common mode current and the load impedance. Simulations are compared to measurements on an inverter mock-up designed by Airbus France. Measurement set-up is performed according to DO160 standards. Modeling results show a good correlation with measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.