Thioglycosidic bonds are of utmost importance in biomolecules as their incorporation led to more stable glycomimetics with potential drug activities. Until now only chemical methods were available for their incorporation into glycofuranosyl conjugates. Herein, we wish to describe the use of the first furanothioglycoligase for the preparation of a great variety of thioaryl derivatives with moderate to excellent yields. Of great interest, a stable 1-thioimidoyl arabinofuranose, classically used in chemical glycosylation, was able to efficiently act as a donor through an original enzymatic remote activation mechanism. Study of the chemical structure as well as the nucleophilicity of the thiol allowed us to optimize this biocatalyzed process. As a consequence, this mutated enzyme constitutes an original, mild and eco-friendly method of thioligation.
Terminal "high-mannose oligosaccharides" are involved in a broad range of biological and pathological processes, from sperm-egg fusion to influenza and human immunodeficiency virus infections. In spite of many efforts, their synthesis continues to be very challenging and actually represents a major bottleneck in the field. Whereas multivalent presentation of mannopyranosyl motifs onto a variety of scaffolds has proven to be a successful way to interfere in recognition processes involving high-mannose oligosaccharides, such constructs fail at reproducing the subtle differences in affinity towards the variety of protein receptors (lectins) and antibodies susceptible to binding to the natural ligands. Here we report a family of functional high-mannose oligosaccharide mimics that reproduce not only the terminal mannopyranosyl display, but also the core structure and the branching pattern, by replacing some inner mannopyranosyl units with triazole rings. Such molecular design can be implemented by exploiting "click" ligation strategies, resulting in a substantial reduction of synthetic cost. The binding affinities of the new "click" high-mannose oligosaccharide mimics towards two mannose specific lectins, namely the plant lectin concanavalin A (ConA) and the human macrophage mannose receptor (rhMMR), have been studied by enzyme-linked lectin assays and found to follow identical trends to those observed for the natural oligosaccharide counterparts. Calorimetric determinations against ConA, and X-ray structural data support the conclusion that these compounds are not just another family of multivalent mannosides, but real "structural mimics" of the high-mannose oligosaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.