Query processing in data integration occurs over network bound, autonomous data sources. This requires extensions to traditional optimization and execution techniques for three reasons: there is an absence of quality statistics about the data, data transfer rates are unpredictable and bursty, and slow or unavailable data sources can often be replaced by overlapping or mirrored sources. This paper presents the Tukwila data integration system, designed to support adaptivity at its core using a two-pronged approach. Interleaved planning and execution with partial optimization allows Tukwila to quickly recover from decisions based on inaccurate estimates. During execution, Tukwila uses adaptive query operators such as the double pipelined hash join, which produces answers quickly, and the dynamic collector, which robustly and efficiently computes unions across overlapping data sources. We demonstrate that the Tukwila architecture extends previous innovations in adaptive execution (such as query scrambling, mid-execution re-optimization, and choose nodes), and we present experimental evidence that our techniques result in behavior desirable for a data integration system. CommentsPostprint version. Copyright ACM, 1999. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. AbstractQuery processing in data integration occurs over network-bound, autonomous data sources. This requires extensions to traditional optimization and execution techniques for three reasons: there is an absence of quality statistics about the data, data transfer rates are unpredictable and bursty, and slow or unavailable data sources can often be replaced by overlapping or mirrored sources. This paper presents the Tukwila data integration system, designed to support adaptivity at its core using a two-pronged approach. Interleaved planning and execution with partial optimization allows Tukwila to quickly recover from decisions based on inaccurate estimates. During execution, Tukwila uses adaptive query operators such as the double pipelined hash join, which produces answers quickly, and the dynamic collector, which robustly and efficiently computes unions across overlapping data sources. We demonstrate that the Tukwila architecture extends previous innovations in adaptive execution (such as query scrambling, mid-execution re-optimization, and choose nodes), and we present experimental evidence that our techniques result in behavior desirable for a data integration system.
Query processing in data integration occurs over network bound, autonomous data sources. This requires extensions to traditional optimization and execution techniques for three reasons: there is an absence of quality statistics about the data, data transfer rates are unpredictable and bursty, and slow or unavailable data sources can often be replaced by overlapping or mirrored sources. This paper presents the Tukwila data integration system, designed to support adaptivity at its core using a two-pronged approach. Interleaved planning and execution with partial optimization allows Tukwila to quickly recover from decisions based on inaccurate estimates. During execution, Tukwila uses adaptive query operators such as the double pipelined hash join, which produces answers quickly, and the dynamic collector, which robustly and efficiently computes unions across overlapping data sources. We demonstrate that the Tukwila architecture extends previous innovations in adaptive execution (such as query scrambling, mid-execution re-optimization, and choose nodes), and we present experimental evidence that our techniques result in behavior desirable for a data integration system. CommentsPostprint version. Copyright ACM, 1999. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. AbstractQuery processing in data integration occurs over network-bound, autonomous data sources. This requires extensions to traditional optimization and execution techniques for three reasons: there is an absence of quality statistics about the data, data transfer rates are unpredictable and bursty, and slow or unavailable data sources can often be replaced by overlapping or mirrored sources. This paper presents the Tukwila data integration system, designed to support adaptivity at its core using a two-pronged approach. Interleaved planning and execution with partial optimization allows Tukwila to quickly recover from decisions based on inaccurate estimates. During execution, Tukwila uses adaptive query operators such as the double pipelined hash join, which produces answers quickly, and the dynamic collector, which robustly and efficiently computes unions across overlapping data sources. We demonstrate that the Tukwila architecture extends previous innovations in adaptive execution (such as query scrambling, mid-execution re-optimization, and choose nodes), and we present experimental evidence that our techniques result in behavior desirable for a data integration system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.