The estimation of gene flow using gene frequency divergence information has become increasingly popular because of the difficulty involved in the direct determination of gene flow among populations. The present study examined allozyme gene frequencies in populations of eighteen aquatic invertebrate taxa at two sites in northern Canada. Gene frequencies at polymorpic loci were significantly different among 8-31 localized populations of all species at lgloolik and among IO-36 populations at Churchill confirming the generality of gene pool fragmentation in pond-dwelling organisms. Measures of gene flow estimated from gene frequency divergence, which assume that gene frequency distributions are at equilibrium, were inconsistent with the probable dispersal capacities of taxa. This provoked an examination of historical events as alternative explanations. Both theory and computer simulations demonstrated that when populations grow rapidly in size after founding from few individuals, the gene frequency divergence established during colonization is resistant to decay by gene exchange. Our work suggests that gene frequency distributions are often not in equilibrium and that caution should he employed in attempts to infer gene flow from them in natural populations.
Pond-dwelling copepods have colonized habitats throughout North America after glaciers have receded. Most species are passively transported via resting eggs into new habitats. Colonists originating in a glacial refugium could lose some of the ancestral genetic diversity when they establish new populations and the attenuation may be substantial in populations far removed from the refugium due to multiple founder events. Genetic variation was measured in Heterocope septentrionalis from 27 populations at arctic sites near potential refugia and those more recently deglaciated to determine the effects of postglacial dispersal on patterns of genetic relatedness and diversity. Some populations were more distant, genetically, from others within the same site than those from other more distant sites. Eleven polymorphic enzyme loci were significantly more variable (F [1,294 df] = 5.94, P < 0.025) among individuals from populations near the Alaskan refuge than those at the eastern limit of their distribution. Because populations are typically extremely large and stable this loss of genetic diversity is attributed primarily to repeated founder events during colonization. This result suggests profound genetic changes may occur on a continental scale in passively dispersed copepods due to founder events alone. Their potential for divergence and speciation is greater than currently recognized.
Abstract. -Pond-dwelling copepods have colonized habitats throughout North America after glaciers have receded. Most species are passively transported via resting eggs into new habitats. Colonists originating in a glacial refugium could lose some of the ancestral genetic diversity when they establish new populations and the attenuation may be substantial in populations far removed from the refugium due to multiple founder events. Genetic variation was measured in Heterocope septentrionalis from 27 populations at arctic sites near potential refugia and those more recently deglaciated to determine the effects of postglacial dispersal on patterns of genetic relatedness and diversity. Some populations were more distant, genetically, from others within the same site than those from other more distant sites. Eleven polymorphic enzyme loci were significantly more variable (F [1,294 dj] = 5.94, P < 0.025) among individuals from populations near the Alaskan refuge than those at the eastern limit of their distribution. Because populations are typically extremely large and stable this loss of genetic diversity is attributed primarily to repeated founder events during colonization. This result suggests profound genetic changes may occur on a continental scale in passively dispersed copepods due to founder events alone. Their potential for divergence and speciation is greater than currently recognized.
The Onychophora are a relic taxon which diverged early in the arthropod radiation and have shown little morphological differentiation for several hundred million years. Jamaica has the richest onychophoran fauna in the Caribbean and although only five species are known, they represent 7 per cent of the global fauna. The present study involved an analysis of allozyme and mtDNA diversity in Plicatoperipatus jamaicensis, an endemic species which is the commonest onychophoran on the island. The work showed that P. jamaicensis includes at least two different species. These taxa are largely allopatric, but co-occur at some sites without interbreeding. Allozyme and mtDNA analyses suggest their divergence in the early Pleistocene, following the Pliocene origin of the Plicatoperipatus lineage from a Macroperipatus ancestor. Allozyme variation in both species was unusually low, but sufficient to confirm that each taxon reproduces sexually. Mitochondrial DNA diversity was abundant in both species and indicated that local aggregations did not consist of kin groups. The mitochondrial genomes of both species were small enough to suggest that their organizations are unusual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.