Interpolation of a spatially correlated random process is used in many areas. The best unbiased linear predictor, often called kriging predictor in geostatistical science, requires the solution of a large linear system based on the covariance matrix of the observations. In this article, we show that tapering the correct covariance matrix with an appropriate compactly supported covariance function reduces the computational burden significantly and still has an asymptotic optimal mean squared error. The effect of tapering is to create a sparse approximate linear system that can then be solved using sparse matrix algorithms. Extensive Monte Carlo simulations support the theoretical results. An application to a large climatological precipitation dataset is presented as a concrete practical illustration.
Geostatistical approaches to modeling spatio-temporal data rely on parametric covariance models and rather stringent assumptions, such as stationarity, separability and full symmetry. This paper reviews recent advances in the literature on space-time covariance functions in light of the aforementioned notions, which are illustrated using wind data from Ireland. Experiments with time-forward kriging predictors suggest that the use of more complex and more realistic covariance models results in improved predictive performance.
A new class of multivariate skew-normal distributions, fundamental skew-normal distributions and their canonical version, is developed. It contains the product of independent univariate skew-normal distributions as a special case. Stochastic representations and other main properties of the associated distribution theory of linear and quadratic forms are considered. A unified procedure for extending this class to other families of skew distributions such as the fundamental skew-symmetric, fundamental skew-elliptical, and fundamental skew-spherical class of distributions is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.