Porphyrin cage-compounds are used as biomimetic models and substrate-selective catalysts in supramolecular chemistry. In this work we present the resolution of planar-chiral porphyrin cages and the determination of their absolute configuration by vibrational circular dichroism in combination with density functional theory calculations. The chiral porphyrin-cages form complexes with achiral and chiral viologen-guests and upon binding one of the axial enantiomorphs of the guest is bound selectively, as is indicated by induced-electronic-dichroism-spectra in combination with calculations. This host-guest binding also leads to unusual enhanced vibrational circular dichroism, which is the result of a combination of phenomena, such as rigidification of the host and guest structures, charge transfer, and coupling of specific vibration modes of the host and guest. The results offer insights in how the porphyrin cage-compounds may be used to construct a future molecular Turing machine that can write chiral information onto polymer chains.
Among the key characteristics of living systems are their ability to self‐replicate and the fact that they exist in an open system away from equilibrium. Herein, we show how the outcome of the competition between two self‐replicators, differing in size and building block composition, is different depending on whether the experiments are conducted in a closed vial or in an open and out‐of‐equilibrium replication–destruction regime. In the closed system, the slower replicator eventually prevails over the faster competitor. In a replication‐destruction regime, implemented through a flow system, the outcome of the competition is reversed and the faster replicator dominates. The interpretation of the experimental observations is supported by a mass‐action‐kinetics model. These results represent one of the few experimental manifestations of selection among competing self‐replicators based on dynamic kinetic stability and pave the way towards Darwinian evolution of abiotic systems.
Self-replicating molecules provide a simple approach for investigating fundamental processes in scenarios of the emergence of life. Although homochirality is an important aspect of life and of how it emerged, the effects of chirality on self-replicators have received only little attention so far. Here, we report several self-assembled self-replicators with enantioselectivity that emerge spontaneously and grow only from enantiopure material. These require a relatively small number of chiral units in the replicators (down to eight) and in the precursors (down to a single chiral unit), compared to the only other enantioselective replicator reported previously. One replicator was found to incorporate material of its own handedness with high fidelity when provided with a racemic mixture of precursors, thus sorting (L)-and (D)-precursors into (L)-and (D)-replicators. Systematic studies reveal that the presence or absence of enantioselectivity depends on structural features (ring size of the replicator) that appear to impose constraints on its supramolecular organization. This work reveals new aspects of the little researched interplay between chirality and self-replication and represents another step toward the de novo synthesis of life.
Among the key characteristics of living systems are their ability to self‐replicate and the fact that they exist in an open system away from equilibrium. Herein, we show how the outcome of the competition between two self‐replicators, differing in size and building block composition, is different depending on whether the experiments are conducted in a closed vial or in an open and out‐of‐equilibrium replication–destruction regime. In the closed system, the slower replicator eventually prevails over the faster competitor. In a replication‐destruction regime, implemented through a flow system, the outcome of the competition is reversed and the faster replicator dominates. The interpretation of the experimental observations is supported by a mass‐action‐kinetics model. These results represent one of the few experimental manifestations of selection among competing self‐replicators based on dynamic kinetic stability and pave the way towards Darwinian evolution of abiotic systems.
Self-replicating molecules provide a simple approach for investigating fundamental processes in scenarios of the emergence of life. Although homochirality is an important aspect of life and of how it emerged, the effects of chirality on self-replicators have received only little attention so far. Here we report several self-assembled self-replicators with chiral selectivity, that emerge spontaneously and grow only from enantiopure material. These require a relatively small number of chiral units in the replicators (down to 8) and in the precursors (down to a single chiral unit), compared to the only other chiral selective replicator reported previously. One replicator was found to incorporate material of its own handedness with high fidelity when provided with a racemic mixture of precursors, thus sorting (L)- and (D)-precursors into (L)- and (D)-replicators. Systematic studies reveal that the presence or absence of chiral selectivity depends on structural features (ring size of the replicator) that appear to impose constraints on its supramolecular organization. This work reveals new aspects of the little researched interplay between chirality and self-replication and represents another step towards the de novo synthesis of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.