The flux flow properties of epitaxial niobium films with different pinning strengths are investigated by dc electrical resistance measurements and mapped to results derived within the framework of a theoretical model. Investigated are the cases of weak random pinning in as-grown films, strong random pinning in Ga ion-irradiated films, and strong periodic pinning induced by a nanogroove array milled by focused ion beam. The generic feature of the current-voltage curves of the films consists in instability jumps to the normal state at some instability current density j * as the vortex lattice reaches its critical velocity v * . While v * (B) monotonically decreases for as-grown films, the irradiated films exhibit a non-monotonic dependence v * (B) attaining a maximum in the low-field range. In the case of nanopatterned films, this broad maximum is accompanied by a much sharper maximum in both, v * (B) and j * (B), which we attribute to the commensurability effect when the spacing between the vortex rows coincides with the location of the grooves. We argue that the observed behavior of v * (B) can be explained by the pinning effect on the vortex flow instability and support our claims by fitting the experimental data to theoretical expressions derived within a model accounting for the field dependence of the depinning current density.
The interplay between vortex guiding and the Hall effect in superconducting Nb films with periodically arranged nanogrooves is studied via four-probe measurements in standard and Hall configurations and accompanying theoretical modeling. The nanogrooves are milled by focused ion beam and induce a symmetric pinning potential of the washboard type. The resistivity tensor of the films is determined in the limit of small current densities at temperatures close to the critical temperature for the fundamental matching configuration of the vortex lattice with respect to the pinning nanolandscape. The angle between the current direction with respect to the grooves is set at seven fixed values between 0 • and 90 • . A sign change is observed in the temperature dependence of the Hall resistivity ρ − ⊥ of as-grown films in a narrow temperature range near Tc. By contrast, for all nanopatterned films ρ − ⊥ is nonzero in a broader temperature range below Tc, allowing us to discriminate between two contributions in ρ − ⊥ , namely one contribution originating from the guided vortex motion and the other one caused by the Hall anomaly just as in as-grown Nb films. All four measured resistivity components are successfully fitted to analytical expressions derived within the framework of a stochastic model of competing isotropic and anisotropic pinning. This provides evidence of the model validity for the description of the resistive response of superconductor thin films with washboard pinning nanolandscapes. arXiv:1604.01161v1 [cond-mat.supr-con]
In situ monitoring of thin film growth on the lateral nanoscale provides insight into different growth stages and establishes a basis for feedback-controlled optimization of the growth process. Here we present a novel approach towards in situ monitoring of area-selective atomic layer deposition of metals, in particular platinum, using the electrical conductance of the growing layer as probed quantity. Area-selectivity is reached by thin platinum seed layers fabricated by focused electron beam induced deposition (FEBID). Different growth stages are identified by their respective impact on the conductance. The growth rate is optimized in a feedback-loop that controls the cycling periods of the atomic layer deposition process employing a genetic algorithm. Our approach is sufficiently general to be applicable to a large variety of other deposition setups that do not use FEBID for seeding.
In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8–9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12.
Die vorliegende Dissertation behandelt das Thema der Wechselstromleitfähigkeit nano-granularer Metalle, welche mit Hilfe der fokussierten elektronenstrahlinduzierten Direktabscheidung (FEBID) hergestellt wurden, sowie der dielektrischen Relaxation in metall-organischen Gerüstverbindungen (MOFs). Sie war eingebettet in das interdisziplinäre Projekt „Dielectric and Ferroelectric Surface-Mounted Metal-Organic Frameworks (SURMOFs) as Sensor Devices“ im Rahmen des DPG-Schwerpunktsprogramms „Coordination Networks: Building Blocks for Functional Systems“ (SPP 1928, COORNETs). Dabei verfolgt sie ein Sensorkonzept zur selektiven Detektion von Analytgasen. Der zentrale Erfolg der Arbeit besteht dabei in neuen Erkenntnissen über die Wechselstromleitfähigkeit nano-granularer Pt(C)-FEBID-Deponate. Die hierbei gewonnen Erkenntnisse können in Zukunft einen weiteren Baustein in der theoretischen Beschreibung dieses grundlegend interessanten und für sensorische Anwendungen wichtigen Teilgebiets der Festkörperphysik darstellen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.