Thanks to the efforts of the robotics and autonomous systems community, robots are becoming ever more capable. There is also an increasing demand from end-users for autonomous service robots that can operate in real environments for extended periods. In the STRANDS project we are tackling this demand head-on by integrating state-of-the-art artificial intelligence and robotics research into mobile service robots, and deploying these systems for long-term installations in security and care environments. Over four deployments, our robots have been operational for a combined duration of 104 days autonomously performing end-user defined tasks, covering 116km in the process. In this article we describe the approach we have used to enable long-term autonomous operation in everyday environments, and how our robots are able to use their long run times to improve their own performance
Abstract-Autonomous systems will play an essential role in many applications across diverse domains including space, marine, air, field, road, and service robotics. They will assist us in our daily routines and perform dangerous, dirty and dull tasks. However, enabling robotic systems to perform autonomously in complex, real-world scenarios over extended time periods (i.e. weeks, months, or years) poses many challenges. Some of these have been investigated by sub-disciplines of Artificial Intelligence (AI) including navigation & mapping, perception, knowledge representation & reasoning, planning, interaction, and learning. The different sub-disciplines have developed techniques that, when re-integrated within an autonomous system, can enable robots to operate effectively in complex, long-term scenarios. In this paper, we survey and discuss AI techniques as 'enablers' for long-term robot autonomy, current progress in integrating these techniques within long-running robotic systems, and the future challenges and opportunities for AI in long-term autonomy.
This paper presents a novel 3DOF pedestrian trajectory prediction approach for autonomous mobile service robots. While most previously reported methods are based on learning of 2D positions in monocular camera images, our approach uses range-finder sensors to learn and predict 3DOF pose trajectories (i.e. 2D position plus 1D rotation within the world coordinate system). Our approach, T-Pose-LSTM (Temporal 3DOF-Pose Long-Short-Term Memory), is trained using long-term data from real-world robot deployments and aims to learn context-dependent (environment-and timespecific) human activities. Our approach incorporates long-term temporal information (i.e. date and time) with short-term pose observations as input. A sequence-to-sequence LSTM encoderdecoder is trained, which encodes observations into LSTM and then decodes as predictions. For deployment, it can perform on-the-fly prediction in real-time. Instead of using manually annotated data, we rely on a robust human detection, tracking and SLAM system, providing us with examples in a global coordinate system. We validate the approach using more than 15K pedestrian trajectories recorded in a care home environment over a period of three months. The experiment shows that the proposed T-Pose-LSTM model advances the state-of-the-art 2D-based method for human trajectory prediction in long-term mobile robot deployments.
A long-standing goal of AI is to enable robots to plan in the face of uncertain and incomplete information, and to handle task failure intelligently. This paper shows how to achieve this. There are two central ideas. The first idea is to organize the robot's knowledge into three layers: instance knowledge at the bottom, commonsense knowledge above that, and diagnostic knowledge on top. Knowledge in a layer above can be used to modify knowledge in the layer(s) below. The second idea is that the robot should represent not just how its actions change the world, but also what it knows or believes. There are two types of knowledge effects the robot's actions can have: epistemic effects (I believe X because I saw it) and assumptions (I'll assume X to be true). By combining the knowledge layers with the models of knowledge effects, we can simultaneously solve several problems in robotics: (i) task planning and execution under uncertainty; (ii) task planning and execution in open worlds; (iii) explaining task failure; (iv) verifying those explanations. The paper describes how the ideas are implemented in a three-layer architecture on a mobile robot platform. The robot implementation was evaluated in five different experiments on object search, mapping, and room categorization.
Abstract-This paper presents a new approach for topological localisation of service robots in dynamic indoor environments. In contrast to typical localisation approaches that rely mainly on static parts of the environment, our approach makes explicit use of information about changes by learning and modelling the spatio-temporal dynamics of the environment where the robot is acting. The proposed spatio-temporal world model is able to predict environmental changes in time, allowing the robot to improve its localisation capabilities during longterm operations in populated environments. To investigate the proposed approach, we have enabled a mobile robot to autonomously patrol a populated environment over a period of one week while building the proposed model representation. We demonstrate that the experience learned during one week is applicable for topological localization even after a hiatus of three months by showing that the localization error rate is significantly lower compared to static environment representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.