We present automatically parameterised Fully Homomorphic Encryption (FHE) for encrypted neural network inference and exemplify our inference over FHE-compatible neural networks with our own open-source framework and reproducible examples. We use the fourth generation Cheon, Kim, Kim, and Song (CKKS) FHE scheme over fixed points provided by the Microsoft Simple Encrypted Arithmetic Library (MS-SEAL). We significantly enhance the usability and applicability of FHE in deep learning contexts, with a focus on the constituent graphs, traversal, and optimisation. We find that FHE is not a panacea for all privacy-preserving machine learning (PPML) problems and that certain limitations still remain, such as model training. However, we also find that in certain contexts FHE is well-suited for computing completely private predictions with neural networks. The ability to privately compute sensitive problems more easily while lowering the barriers to entry can allow otherwise too-sensitive fields to begin advantaging themselves of performant third-party neural networks. Lastly, we show how encrypted deep learning can be applied to a sensitive real-world problem in agri-food, i.e., strawberry yield forecasting, demonstrating competitive performance. We argue that the adoption of encrypted deep learning methods at scale could allow for a greater adoption of deep learning methodologies where privacy concerns exist, hence having a large positive potential impact within the agri-food sector and its journey to net zero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.