Highlights Effective response to developing-world groundwater salinity to safeguard water supply Salinity problem defined via conceptual model -salinity survey -water-point mapping Groundwater salinity response capacity constrained in Malawi by multiple factors Need to evaluate options beyond model-supply paradigm of hand-pumped borehole supply Feasibility study of larger groundwater or surface-water supply alternatives to boldly go beyond Responding to groundwater salinity in rural African alluvial valley aquifer systems the world of hand-pumped groundwater supply?
Fluoride concentrations in Malawi’s groundwater are primarily controlled by geogenic sources that are highly variable and may cause a heterogeneous fluoride occurrence and local-to-regional variations in fluorosis health risks posed. Our aim was to address the challenge of developing a national solution to predicting groundwater vulnerability to geogenic fluoride risk in the country of Malawi where incidences of fluorosis are reported and typical developing world problems of limited data and resources abound. Previously there have only been sporadic, local-scale studies linking fluoride occurrence with health risks in Malawi with no attempts to tackle the issue nationally. We hence develop a screening method for predicting groundwater vulnerability to geogenic fluoride in the form of detailed risk maps developed from statistical relationships shown between groundwater fluoride occurrence and known geogenic fluoride sources. The approach provides for dynamic update and informed acquisition of new data and hence on-going improving capacity to manage fluoride risks in Malawi. Our screening method provides a technical basis for redefining national fluoride policy to ensure commensurate management of health risks posed. Specifically, the approach provides a pathway for stepped progression from the current 6 mg/L Malawian standard for fluoride in drinking water to adoption of the World Health Organisation 1.5 mg/L guideline standard.
Consumption of groundwater containing fluoride exceeding World Health Organization (WHO) 1.5 mg/L standard leaves people vulnerable to fluorosis: a vulnerability not well characterised in Malawi. To evaluate geogenic fluoride source and concentration, groundwater fluoride and geology was documented in central Malawi where groundwater supplies are mainly sourced from the weathered basement aquifer. Lithological composition was shown as the main control on fluoride occurrence. Augen gneiss of granitic composition posed the greatest geological fluoride risk. The weathered basement aquifer profile was the main factor controlling fluoride distributions. These results and fluoride-lithology statistical analysis allowed the development of a graded map of geological fluoride risk. A direct link to human health risk (dental fluorosis) from geological fluoride was quantified to support science-led policy change for fluoride in rural drinking water in Malawi. Hazard quotient (HQ) values were calculated and assigned to specific water points, depending on user age group; in this case, 74% of children under six were shown to be vulnerable to dental fluorosis. Results are contrary to current standard for fluoride in Malawi groundwater of 6 mg/L, highlighting the need for policy change. Detailed policy recommendations are presented based on the results of this study.
Meeting long-term rural community water supply needs requires diligent geohydrological conceptualisation. Study of Malawi’s Lake Chilwa Basin, including sampling of 330 water points in Phalombe District, enabled assessment of groundwater quality influence upon supply. The control of larger Lake Chilwa paleo-environments on current Basin groundwater quality is demonstrated. Lacustrine sediment deposition forming high-level deposits under open lake conditions and terrace deposits under open and closed lake conditions significantly control the groundwater major-ion quality and salinity now observed. Paleo-lake extent marks the transition between low-TDS (total dissolved solids) groundwater suitable for water supply at higher elevations and high-TDS brackish groundwater in areas overlain by lacustrine deposits closer to the current lake level. Low-TDS groundwater is limited to mid-to-low reach influent leakage of rivers incising terraces. Permeable fluvial deposits within the deeper paleo-river channel may possibly provide low-TDS water. The conceptual model, whereby paleo-lake controls groundwater salinity, provides science-based evidence to address policy to manage the significant water point functionality concerns quantified at the district and river basin scales. Targeting of the low-TDS groundwater alongside improved use of upland low-TDS stream/river sources with fewer, but larger capacity, and better maintained gravity-fed supply schemes are recommended. This study hence shows the value of paleo-geohydrology interpretation of the lake–groundwater system conceptualisation to inform Sustainable Development Goal 6 (SDG 6.5.1)—integrated water resources management policy for rural water supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.