Field and laboratory studies of anoxic sediments from Cape Lookout Bight, North Carolina, suggest that anaerobic methane oxidation is mediated by a consortium of methanogenic and sulfate‐reducing bacteria. A seasonal survey of methane oxidation and CO2 reduction rates indicates that methane production was confined to sulfate‐depleted sediments at all times of year, while methane oxidation occurred in two modes. In the summer, methane oxidation was confined to sulfate‐depleted sediments and occurred at rates lower than those of CO2 reduction. In the winter, net methane oxidation occurred in an interval at the base of the sulfate‐containing zone. Sediment incubation experiments suggest both methanogens and sulfate reducers were responsible for the observed methane oxidation. In one incubation experiment both modes of oxidation were partially inhibited by 2‐bromoethanesulfonic acid (a specific inhibitor of methanogens). This evidence, along with the apparent confinement of methane oxidation to sulfate‐depleted sediments in the summer, indicates that methanogenic bacteria are involved in methane oxidation. In a second incubation experiment, net methane oxidation was induced by adding sulfate to homogenized methanogenic sediments, suggesting that sulfate reducers also play a role in the process. We hypothesize that methanogens oxidize methane and produce hydrogen via a reversal of CO2 reduction. The hydrogen is efficiently removed and maintained at low concentrations by sulfate reducers. Pore water H2 concentrations in the sediment incubation experiments (while net methane oxidation was occurring) were low enough that methanogenic bacteria could derive sufficient energy for growth from the oxidation of methane. The methanogen‐sulfate reducer consortium is consistent not only with the results of this study, but may also be a feasible mechanism for previously documented anaerobic methane oxidation in both freshwater and marine environments.
Methane oxidation in the anoxic sediments of Skan Bay, Alaska resulted in fractionation of carbon and hydrogen isotopes in methane. Isotope fractionation factors were estimated by fitting methane concentration, δ13C‐CH4, and δD‐CH4 data with depth distributions predicted by an open system, steady state model. Assuming that molecular diffusion coefficients for 12CH4, 13CH4, and12CH3D are identical, the predicted fractionation factors were 1.0088±0.0013 and 1.157±0.023 for carbon and hydrogen isotopes, respectively. If aqueous diffusion coefficients for the different isotopic species of methane differ significantly, the predicted fractionation factors are larger by an amount proportional to the diffusion isotope effect.
Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities. Anaerobic methane oxidation regulates methane emissions in marine sediments and appears to occur through a reversal of a methane-producing metabolism. We tested the assumption that ANME are obligate methanotrophs by detecting and quantifying gene transcription of ANME-1 across zones of methane oxidation versus methane production in sediments from the White Oak River estuary, North Carolina. ANME-1 consistently transcribe 16S rRNA and mRNA of methyl coenzyme M reductase (mcrA), the key gene for methanogenesis, up to 45 cm into methanogenic sediments. CARD-FISH shows that ANME-1 exist as single rod-shaped cells or pairs of cells. Integrating normalized depth distributions of 16S rDNA and rRNA (measured with qPCR and RT-qPCR respectively) shows that 26-77% of the rDNA (a proxy for ANME-1 cell numbers), and 18-76% of the rRNA (a proxy for ANME-1 activity) occurs within methane-producing sediments. These results, along with a re-assessment of the published Iiterature, change the perspective to ANME-1 as methanogens that are also capable of methane oxidation.
Among the most fundamental constraints governing the distribution of microorganisms in the environment is the availability of chemical energy at biologically useful levels. To assess the minimum free energy yield that can support microbial metabolism in situ, we examined the thermodynamics of H2‐consuming processes in anoxic sediments from Cape Lookout Bight, NC, USA. Depth distributions of H2 partial pressure, along with a suite of relevant concentration data, were determined in sediment cores collected in November (at 14.5°C) and August (at 27°C) and used to calculate free energy yields for methanogenesis and sulfate reduction. At both times of year, and for both processes, free energy yields gradually decreased (became less negative) with depth before reaching an apparent asymptote. Sulfate‐reducing bacteria exhibited an asymptote of −19.1±1.7 kJ (mol SO2−4)−1, while methanogenic Archaea were apparently supported by energy yields as small as −10.6±0.7 kJ (mol CH4)−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.