Context. Theoretical studies of collapsing clouds have found that even a relatively weak magnetic field may prevent the formation of disks and their fragmentation. However, most previous studies have been limited to cases where the magnetic field and the rotation axis of the cloud are aligned. Aims. We study the transport of angular momentum, and its effects on disk formation, for non-aligned initial configurations and a range of magnetic intensities. Methods. We perform three-dimensional, adaptive mesh, numerical simulations of magnetically supercritical collapsing dense cores using the magneto-hydrodynamic code Ramses. We compute the contributions of all the relevant processes transporting angular momentum, in both the envelope and the region of the disk. We clearly define centrifugally supported disks and thoroughly study their properties. Results. At variance with earlier analyses, we show that the transport of angular momentum acts less efficiently in collapsing cores with non-aligned rotation and magnetic field. Analytically, this result can be understood by taking into account the bending of field lines occurring during the gravitational collapse. For the transport of angular momentum, we conclude that magnetic braking in the mean direction of the magnetic field tends to dominate over both the gravitational and outflow transport of angular momentum. We find that massive disks, containing at least 10% of the initial core mass, can form during the earliest stages of star formation even for mass-to-flux ratios as small as three to five times the critical value. At higher field intensities, the early formation of massive disks is prevented. Conclusions. Given the ubiquity of Class I disks, and because the early formation of massive disks can take place at moderate magnetic intensities, we speculate that for stronger fields, disks will form later, when most of the envelope will have been accreted. In addition, we speculate that some observed early massive disks may actually be outflow cavities, mistaken for disks by projection effects.
Context. Stars, and more particularly massive stars, have a drastic impact on galaxy evolution. Yet the conditions in which they form and collapse are still not fully understood. Aims. In particular, the influence of the magnetic field on the collapse of massive clumps is relatively unexplored, it is therefore of great relevance in the context of the formation of massive stars to investigate its impact. Methods. We perform high resolution, MHD simulations of the collapse of one hundred solar masses, turbulent and magnetized clouds, with the adaptive mesh refinement code RAMSES. We compute various quantities such as mass distribution, magnetic field, and angular momentum within the collapsing core and study the episodic outflows and the fragmentation that occurs during the collapse. Results. The magnetic field has a drastic impact on the cloud evolution. We find that magnetic braking is able to substantially reduce the angular momentum in the inner part of the collapsing cloud. Fast and episodic outflows are being launched with typical velocities of the order of 1−3 km s −1 , although the highest velocities can be as high as 20−40 km s −1 . The fragmentation in several objects is reduced in substantially magnetized clouds with respect to hydrodynamical ones by a factor of the order of 1.5−2. Conclusions. We conclude that magnetic fields have a significant impact on the evolution of massive clumps. In combination with radiation, magnetic fields largely determine the outcome of massive core collapse. We stress that numerical convergence of MHD collapse is a challenging issue. In particular, numerical diffusion appears to be important at high density and therefore could possibly lead to an overestimation of the number of fragments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.