In this paper, we deal with computational uncertainty quantification for stochastic models with one random input parameter. The goal of the paper is twofold: First, to approximate the set of probability density functions of the solution stochastic process, and second, to show the capability of our theoretical findings to deal with some important epidemiological models. The approximations are constructed in terms of a polynomial evaluated at the random input parameter, by means of generalized polynomial chaos expansions and the stochastic Galerkin projection technique. The probability density function of the aforementioned univariate polynomial is computed via the random variable transformation method, by taking into account the domains where the polynomial is strictly monotone. The algebraic/exponential convergence of the Galerkin projections gives rapid convergence of these density functions. The examples are based on fundamental epidemiological models formulated via linear and nonlinear differential and difference equations, where one of the input parameters is assumed to be a random variable.
The objective of this paper is to complete certain issues from our recent contribution (Calatayud, J.; Cortés, J.-C.; Jornet, M.; Villafuerte, L. Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Adv. Differ. Equ. 2018, 392, 1–29, doi:10.1186/s13662-018-1848-8). We restate the main theorem therein that deals with the homogeneous case, so that the hypotheses are clearer and also easier to check in applications. Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of mean square analytic solution and a numerical example. We also prove the uniqueness of mean square solution via a habitual Lipschitz condition that extends the classical Picard theorem to mean square calculus. In this manner, the study on general random non-autonomous second order linear differential equations with analytic data processes is completely resolved. Finally, we relate our exposition based on random power series with polynomial chaos expansions and the random differential transform method, the latter being a reformulation of our random Fröbenius method.
In this work, we study the full randomized versions of Airy, Hermite and Laguerre differential equations, which depend on a random variable appearing as an equation coefficient as well as two random initial conditions. In previous contributions, the mean square stochastic solutions to the aforementioned random differential equations were constructed via the Fröbenius method, under the assumption of exponential growth of the absolute moments of the equation coefficient, which is equivalent to its essential boundedness. In this paper we aim at relaxing the boundedness hypothesis to allow more general probability distributions for the equation coefficient. We prove that the equations are solvable in the mean square sense when the equation coefficient has finite moment-generating function in a neighborhood of the origin. A thorough discussion of the new hypotheses is included.
Kernel density estimation is a non-parametric method to estimate the probability density function of a random quantity from a finite data sample. The estimator consists of a kernel function and a smoothing parameter called the bandwidth. Despite its undeniable usefulness, the convergence rate may be slow with the number of realizations and the discontinuity and peaked points of the target density may not be correctly captured. In this work, we analyze the applicability of a parametric method based on Monte Carlo simulation for the density estimation of certain random variable transformations. This approach has important applications in the setting of differential equations with input random parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.