We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a "big rip."
We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20 M M bh 100 M where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to emission of gravitational radiation and ultimately merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2 − 53 Gpc −3 yr −1 rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have no optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next generation experiments will be invaluable in performing these tests.The nature of the dark matter (DM) is one of the most longstanding and puzzling questions in physics. Cosmological measurements have now determined with exquisite precision the abundance of DM [1, 2], and from both observations and numerical simulations we know quite a bit about its distribution in Galactic halos. Still, the nature of the DM remains a mystery. Given the efficacy with which weakly-interacting massive particlesfor many years the favored particle-theory explanationhave eluded detection, it may be warranted to consider other possibilities for DM. Primordial black holes (PBHs) are one such possibility [3-6].Here we consider whether the two ∼ 30 M black holes detected by LIGO [7] could plausibly be PBHs. There is a window for PBHs to be DM if the BH mass is in the range 20 M M 100 M [8,9]. Lower masses are excluded by microlensing surveys [10][11][12]. Higher masses would disrupt wide binaries [9,13,14]. It has been argued that PBHs in this mass range are excluded by CMB constraints [15,16]. However, these constraints require modeling of several complex physical processes, including the accretion of gas onto a moving BH, the conversion of the accreted mass to a luminosity, the self-consistent feedback of the BH radiation on the accretion process, and the deposition of the radiated energy as heat in the photon-baryon plasma. A significant (and difficult to quantify) uncertainty should therefore be associated with this upper limit [17], and it seems worthwhile to examine whether PBHs in this mass range could have other observational consequences.In this Letter, we show that if DM consists of ∼ 30 M BHs, then the rate for mergers of such PBHs falls within the merger rate inferred from GW150914. In any galactic halo, there is a chance two BHs will undergo a hard scatter, lose energy to a s...
We present a formalism for analyzing a full-sky temperature and polarization map of the cosmic microwave background. Temperature maps are analyzed by expanding over the set of spherical harmonics to give multipole moments of the two-point correlation function. Polarization, which is described by a second-rank tensor, can be treated analogously by expanding in the appropriate tensor spherical harmonics. We provide expressions for the complete set of temperature and polarization multipole moments for scalar and tensor metric perturbations. Four sets of multipole moments completely describe isotropic temperature and polarization correlations; for scalar metric perturbations one set is identically zero, giving the possibility of a clean determination of the vector and tensor contributions. The variance with which the multipole moments can be measured in idealized experiments is evaluated, including the effects of detector noise, sky coverage, and beam width. Finally, we construct coordinate-independent polarization two-point correlation functions, express them in terms of the multipole moments, and derive small-angle limits. ͓S0556-2821͑97͒05012-1͔PACS number͑s͒: 98.70.Vc, 98.80.Cq
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.