Background : The emerging virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a large outbreak of novel coronavirus disease (COVID-19) in Wuhan, China since December 2019. As of February 15, there were 56 COVID-19 cases confirmed in Hong Kong since the first case with symptom onset on January 23, 2020. Methods : Based on the publicly available surveillance data, we identified 21 transmission events, which occurred in Hong Kong, and had primary cases known, as of February 15, 2020. An interval censored likelihood framework is adopted to fit three different distributions, Gamma, Weibull and lognormal, that govern the SI of COVID-19. We selection the distribution according to the Akaike information criterion corrected for small sample size (AICc). Findings : We found the Lognormal distribution performed lightly better than the other two distributions in terms of the AICc. Assuming a Lognormal distributed model, we estimated the mean of SI at 3.9 days (95%CI: 2.7−7.3) and SD of SI at 3.1 days (95%CI: 1.7−10.1) by using the information of all 21 transmission events in Hong Kong. Conclusion : The SI of COVID-19 may be shorter than the preliminary estimates in previous works. Given the likelihood that SI could be shorter than the incubation period, pre-symptomatic transmission may occur, and extra efforts on timely contact tracing and quarantine are crucially needed in combating the COVID-19 outbreak.
Background: The emerging virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a large outbreak of novel coronavirus disease (COVID-19) in Wuhan, China since December 2019. As of February 15, there were 56 COVID-19 cases confirmed in Hong Kong since the first case with symptom onset on January 23, 2020.Methods: Based on the publicly available surveillance data, we identified 21 transmission events, which occurred in Hong Kong, and had primary cases known, as of February 15, 2020. An interval censored likelihood framework is adopted to fit three different distributions, Gamma, Weibull and lognormal, that govern the SI of COVID-19. We select the distribution according to the Akaike information criterion corrected for small sample size (AICc).Findings: We found the Gamma distribution performed lightly better than the other two distributions. Assuming a Gamma distributed model, we estimated the mean of SI at 4.4 days (95%CI: 2.9−6.7) and SD of SI at 3.0 days (95%CI: 1.8−5.8) by using the information of all 21 transmission events in Hong Kong.Conclusion: The SI of COVID-19 may be shorter than the preliminary estimates in previous works. Given the likelihood that SI could be shorter than the incubation period, pre-symptomatic transmission may occur, and extra efforts on timely contact tracing and quarantine are crucially needed in combating the COVID-19 outbreak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.