Information on over- and underexpressed genes in prostate cancer in comparison to adjacent normal tissue was sought by DNA microarray analysis. Approximately 12,600 mRNA sequences were analyzed from a total of 26 tissue samples (17 untreated prostate cancers, 9 normal adjacent to prostate cancer tissues) obtained by prostatectomy. Hierarchical clustering was performed. Expression levels of 63 genes were found significantly (at least 2.5-fold) increased, whereas expression of 153 genes was decreased (at least 2.5-fold) in prostate cancer versus adjacent normal tissue. In addition to previously described genes such as hepsin, overexpression of several genes was found that has not drawn attention before, such as the genes encoding the specific granule protein (SGP28), alpha-methyl-acyl-CoA racemase, low density lipoprotein (LDL)-phospholipase A2, and the anti-apoptotic gene PYCR1. The radiosensitivity gene ATDC and the genes encoding the DNA-binding protein inhibitor ID1 and the phospholipase inhibitor uteroglobin were significantly down-regulated in the cancer samples. DNA microarray data for eight genes were confirmed quantitatively in five normal and five cancer tissues by real-time reverse transcriptase-polymerase chain reaction with a high correlation between the two methods. Laser capture microdissection of epithelial and stromal compartments from cancer and histological normal specimens followed by an amplification protocol for low levels of RNA (<0.1 microg) allowed us to distinguish between gene expression profiles characteristic of epithelial cells and those typical of stroma. Most of the genes identified in the nonmicrodissected tumor material as up-regulated were indeed overexpressed in cancerous epithelium rather than in the stromal compartment. We conclude that development of prostate cancer is associated with down-regulation as well as up-regulation of genes that show complex differential regulation in epithelia and stroma. Some of the gene expression alterations identified in this study may prove useful in the development of novel diagnostic and therapeutic strategies.
Sialic acid-containing glycosphingolipids, i.e., gangliosides, constitute a major component of neuronal cells and are thought to be essential for brain function. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyzes the initial step of glycosphingolipid (GSL) biosynthesis. To gain insight into the role of GSLs in brain development and function, a cell-specific disruption of Ugcg was performed as indicated by the absence of virtually all glucosylceramidebased GSLs. Shortly after birth, mice showed dysfunction of cerebellum and peripheral nerves, associated with structural defects. Axon branching of Purkinje cells was significantly reduced. In primary cultures of neurons, dendritic complexity was clearly diminished, and pruning occurred early. Myelin sheaths of peripheral nerves were broadened and focally severely disorganized. GSL deficiency also led to a down-regulation of gene expression sets involved in brain development and homeostasis. Mice died Ϸ3 weeks after birth. These results imply that GSLs are essential for brain maturation.glycosphingolipid ͉ ceramide ͉ neuron differentiation ͉ myelin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.