This assignment applies to all translations of the Work as well as to preliminary display/posting of the abstract of the accepted article in electronic form before publication. If any changes in authorship (order, deletions, or additions) occur after the manuscript is submitted, agreement by all authors for such changes must be on file with the Publisher. An author's name may be removed only at his/her written request. (Note: Material prepared by employees of the US government in the course of their official duties cannot be copyrighted.
The presence of distant metastases from differentiated thyroid carcinoma decreases the 10-year survival of patients by 50%. Bone metastases represent a frequent complication especially of follicular thyroid cancer and severely reduce the quality of life causing pain, fractures, and spinal cord compression. Diagnosis is established by correlating clinical suspicion with imaging. Imaging is essential to detect, localize, and assess the extension of the lesions and should be used in conjunction with clinical evidence. Bone metastases are typically associated with elevated markers of bone turnover, but these markers have not been evaluated in differentiated thyroid cancer. Skeletal and whole-body magnetic resonance imaging and fusion 2-deoxy-2-[18F]fluoro-D-glucose whole-body positron emission tomography/computed tomography (PET/CT) are the best anatomic and functional imaging techniques available in specialized centers. For welldifferentiated lesions, iodine-PET scan combined 124 I-PET/CT is the newest imaging development and 131 I is the first line of treatment. Bisphosphonates reduce the complications rate and pain, alone or in combination with radioiodine, radionuclides, or external beam radiotherapy and should be employed. Surgery and novel minimally invasive consolidation techniques demand an appropriate patient selection for best results on a multimodal approach. Basic research on interactions between tumor cells and bone microenvironment are identifying potential novel targets for future more effective therapeutic interventions for less differentiated tumors.
Bisphosphonate-associated osteonecrosis of the jaws (BP-ONJ) is a side effect primarily in patients receiving highly potent nitrogen-containing bisphosphonates. The exact etiopathology is unknown. In addition to reduced bone remodeling, there may also be an impact on soft tissues. The impact of nitrogen- (ibandronate, pamidronate, zoledronate) and non-nitrogen-containing bisphosphonates (clodronate) on human umbilicord vein endothelial cells (HUVEC), fibroblasts and osteogenic cells was analyzed employing cell viability testing and a scratch wound assay. The impact on the cell morphology of vital-stained osteogenic cells was investigated by cell visualization (confocal laser scanning microscopy). Pamidronate and zoledronate had the greatest negative impact on all cell lines, whereas the impact of ibandronate and clodronate was less distinct. The effect of clodronate on HUVEC and fibroblasts was particularly marginal. BP-ONJ could be a multifactorial event with multicellular impairments. This might result in altered wound healing. The increased impact of the highly potent bisphosphonates, particularly on non-bone cells, may explain the higher occurrence of BP-ONJ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.