Most of matching or verification phases of fingerprint systems use minutiae types and orientation angle to find matched minutiae pairs from the input and template fingerprints. Unfortunately, due to some non-linear distortions, like excessive pressure and fingers twisting during enrollment, this process can cause the minutiae features to be distorted from the original. The authors are then interested in a fingerprint matching method using contactless images for fingerprint verification. After features extraction, they compute Euclidean distances between template minutiae (bifurcation and ending points) and input image minutiae. They compute then after bifurcation ridges orientation angles and ending point orientations. In the decision stage, they analyze the similarity between templates. The proposed algorithm has been tested on a set of 420 fingerprint images. The verification accuracy is found to be acceptable and the experimental results are promising.
The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the breakthroughs and properties of quantum calculators which make vulnerable existing cryptosystems. In this paper, we propose a random number generation model based on evaluation of the thermal noise power of the volume elements of an electronic system with a volume of 58.83 cm 3. We prove through the sampling of the temperature of each volume element that it is difficult for an attacker to carry out an exploit. In 12 seconds, we generate for 7 volume elements, a stream of randomly generated keys of 187 digits that will be transmitted from source to destination through the properties of quantum cryptography.
Most matching or verification phases of fingerprint systems use minutiae types and orientation angle to find matched minutiae pairs from the input and template fingerprints. Unfortunately, due to some non-linear distortions, like excessive pressure and fingers twisting during enrollment, this process can cause the minutiae features to be distorted from the original. The authors are interested in a fingerprint matching method using contactless images for fingerprint verification. After features extraction, they compute Euclidean distances between template minutiae (bifurcation and ending points) and input image minutiae. They compute then after bifurcation ridges orientation angles and ending point orientations. In the decision stage, they analyze the similarity between templates. The proposed algorithm has been tested on a set of 420 fingerprint images. The verification accuracy is found to be acceptable and the experimental results are promising. Future work will enhance the proposed verification method by a new template protection technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.