Aims
Pulmonary vein isolation (PVI) using radiofrequency ablation (RFA) in patients with paroxysmal atrial fibrillation (PAF) is effective but hampered by pulmonary vein reconnection due to insufficient ablation lesions. High-power delivery over a short period of time (HPSD) in RFA is stated to create more efficient lesions. The aim of this study was to compare intraprocedural safety and outcome of HPSD ablation to conventional power settings in patients undergoing PVI for PAF.
Methods and results
We included 197 patients with PAF that were scheduled for PVI. An ablation protocol with 70 W and a duration cut-off of 7 s at the anterior left atrium (LA) and 5 s at the posterior LA (HPSD group; n = 97) was compared to a conventional power protocol with 30–40 W for 20–40 s (standard group; n = 100) in terms of periprocedural complications and a 1-year outcome. The HPSD group showed significantly less arrhythmia recurrence during 1-year follow-up with 83.1% of patients free from atrial fibrillation compared to 65.1% in the standard group (P < 0.013). No pericardial tamponade, periprocedural thromboembolic complications, or atrio-oesophageal fistula occurred in either group. Mean radiofrequency time (12.4 ± 3.4 min vs. 35.6 ± 12.1 min) and procedural time (89.5 ± 23.9 min vs. 111.15 ± 27.9 min) were significantly shorter in the HPSD group compared to the standard group (both P < 0.001).
Conclusion
High-power short-duration ablation demonstrated a comparable safety profile to conventional ablation. High-power short-duration ablation using 70 W for 5–7 s leads to significantly less arrhythmia recurrences after 1 year. Radiofrequency and procedural time were significantly shortened.
Three-dimensional-augmented fluoroscopy is feasible, safe, and easy to apply as guidance for transseptal puncture and demonstrates a high level of accuracy.
Catheter force measurements using the ST SF catheters show a high level of accuracy regarding differences to reference measurements and reproducibility. The reduced accuracy in measurements of 90° acting forces (parallel contact) might be clinically important when creating, for example, linear lesions.
The MediGuide® system shows a very high level of accuracy regarding localization reproducibility as well as spatial and visual accuracy, which can be ascribed to the magnetic field localization technology. The observed offsets between the geometry visualization and the real phantom are below a clinically relevant threshold.
Background
Steam pops are a rare complication associated with radiofrequency (RF) ablation and are hard to predict. The aim of this study was to assess the influence of coverage between the RF ablation electrode and cardiac tissue on steam pop incidence and lesion size.
Methods and results
An ex vivo model using porcine cardiac preparations and contact force sensing catheters was designed to perform RF ablations at different coverage levels between the RF electrode and cardiac tissue. During coverage level I, only the distal part of the ablation electrode was in contact with tissue. During coverage level II half of the ablation electrode, and during coverage level III the entire ablation electrode was embedded in tissue. RF applications (n = 60) at different coverage levels I–III were systematically performed using the same standardized ablation protocol. Ablations during coverage level III resulted in a significantly higher rate of steam pops (100%) when compared to ablations during coverage level II (10%) and coverage level I (0%), log rank p < .001. Coverage level I ablations resulted in significantly smaller lesion depths, diameters, and impedance drops when compared to higher coverage level ablations, p < .001. In the controlled ex vivo model, there was no difference in applied contact force or energy between different coverage levels.
Conclusions
The level of coverage between RF electrode, cardiac tissue, and the surrounding fluid significantly influenced the incidence of steam pops in an ex vivo setup. Larger coverage between RF electrode and tissue resulted in significantly larger lesion dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.