While lateral flow test formats can be utilized with whole blood and low sample volumes, their diagnostic characteristics are inferior to immunoassays based on chemiluminescence immunoassay (CLIA) or enzyme-linked immunosorbent assay (ELISA) technology. CLIAs and ELISAs can be automated to a high degree but commonly require larger serum or plasma volumes for sample processing. We addressed the suitability of EDTA-anticoagulated whole blood as an alternative sample material for antibody testing against SARS-CoV-2 by electro-CLIA (ECLIA; Roche, Rotkreuz, Switzerland) and ELISA (IgG and IgA; Euroimmun, Germany). Simultaneously drawn venous serum and EDTA-anticoagulated whole blood samples from 223 individuals were included. Correction of the whole blood results for hematocrit led to a good agreement with the serum results for weakly to moderately positive antibody signals. In receiver-operating characteristic curve analysis, all three assays displayed comparable diagnostic accuracy (area under the curve (AUC)) using corrected whole blood and serum (AUCs: 0.97 for ECLIA and IgG ELISA; 0.84 for IgA ELISA). In conclusion, our results suggest that the investigated assays can reliably detect antibodies against SARS-CoV-2 in hemolyzed whole blood anticoagulated with EDTA. Correction of these results for hematocrit is suggested. This study demonstrates that the automated processing of whole blood for identification of SARS-CoV-2 antibodies with common ECLIA and ELISA methods is accurate and feasible.
Although SARS-CoV-2 antibody assays have been found to provide valid results in EDTA-anticoagulated whole blood, so far, they have not demonstrated that antibody levels in whole blood originating from capillary blood samples are comparable to antibody levels measured in blood from a venous origin. Here, blood is drawn simultaneously by capillary and venous blood sampling. Antibody titers are determined by an assay employing electrochemiluminescence (ECLIA) and SARS-CoV-2 total immunoglobulins are detected with specificity directed against the nucleocapsid antigen. Six individuals with confirmed COVID-19 and six individuals without COVID-19 are analyzed. Antibody titers in capillary venous whole blood did not show significant differences, and when corrected for hematocrit, they did not differ from the results obtained from serum. In conclusion, capillary sampled EDTA-anticoagulated whole blood seems to be an attractive alternative matrix for the evaluation of SARS-CoV-2 antibodies when employing ECLIA for detecting total antibodies directed against nucleocapsid antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.