Complex nerve models have been developed for describing the generation of action potentials in humans. Such nerve models have primarily been used to model implantable electrical stimulation systems, where the stimulation electrodes are close to the nerve (nearfield). To address if these nerve models can also be used to model transcutaneous electrical stimulation (TES) (farfield), we have developed a TES model that comprises a volume conductor and different previously published nonlinear nerve models. The volume conductor models the resistive and capacitive properties of electrodes, electrodeskin interface, skin, fat, muscle, and bone. The non-linear nerve models were used to conclude from the potential field within the volume conductor on nerve activation. A comparison of simulated and experimentally measured chronaxie values (a measure for the excitability of nerves) and muscle twitch forces on human volunteers allowed us to conclude that some of the published nerve models can be used in TES models. The presented TES model provides a first step to more extensive model implementations for TES in which e.g., multi-array electrode configurations can be tested.
Keywords
Transcutaneous electrical stimulation (TES) is a technique to artificially activate motor nerves and muscles. It can be used for rehabilitation or the restoration of lost motor functions, e.g., in subjects with brain or spinal cord lesions. Apart from selectively activating motor nerves and muscles, TES activates sensory fibers and pain receptors, producing discomfort and pain. Clinicians try to minimize discomfort by optimizing stimulation parameters, electrode location, and electrode size. There are some studies that found optimal electrode sizes for certain stimulation sites (e.g., gastrocnemius), however the underlying effects why certain electrode sizes are preferred by patients is not well understood. We used a TES model consisting of a finite element (FE) model and a nerve model to assess the influence of different electrode sizes on the selectivity and the perceived comfort for various anatomies. Motor thresholds calculated using the TES model were compared with motor thresholds that were obtained from measurements performed on the forearm of ten human volunteers. Results of the TES model indicate that small electrodes (0.8 x 0.8 cm(2)) are more comfortable for thin fat layers (0.25 cm) and superficial nerves (0.1 cm) and larger electrodes (4.1 x 4.1 cm(2)) are more comfortable for thicker fat layers (2 cm) and deeper nerves (1.1 cm) at a constant recruitment.
In this article, we focus on the least invasive interface: transcutaneous ES (TES), i.e., the use of surface electrodes as an interface between the stimulator and sensory-motor systems. TES is delivered by a burst of short electrical charge pulses applied between pairs of electrodes positioned on the skin. Monophasic or charge-balanced biphasic (symmetric or asymmetric) stimulation pulses can be delivered. The latter ones have the advantage to provide contraction force while minimizing tissue damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.