Preresonance Raman and resonance Raman spectra of the primary donor (P) from reaction centers of the Rhodobacter (Rb.) sphaeroides R26 carotenoidless strain in the P and P+ states, respectively, were obtained at room temperature with 1064-nm excitation and a Fourier transform spectrometer. These spectra clearly indicate that the chromophore modes are observable over those of the protein with no signs of interference below 1800 cm-1. The chromophore modes are dominated by those of the bacteriochlorophylls (BChl a), and it is estimated that, in the P state, ca. 65% of the Raman intensity of the BChl a modes arises from the primary donor. This permits the direct observation of a vibrational spectrum of the primary donor at preresonance with the excitonic 865-nm band. The Raman spectrum of oxidized reaction centers in the presence of ferricyanide clearly exhibits bands arising from a BChl a+ species. The magnitude of the frequency shift of a keto carbonyl of neutral P from 1691 to 1717 cm-1 upon P+ formation strongly suggests that one BChl molecule in P+ carries nearly the full +1 charge. Our results indicate that the unpaired electron in P.+ does not share a molecular orbital common to the two components of the dimer on the time scale of the resonance Raman effect (ca. 10(-13) s).
The [2Fe-2S] ferredoxin from Clostridium pasteurianum is unique among ferredoxins, both by its sequence and by the distribution of its cysteine residues (in positions 11, 14, 24, 56, 60). Thus, no homologous sequences are available to infer, by comparison, the identity of the ligands of the iron-sulfur cluster. Therefore, in order to obtain information on the latter point, a combination of site-directed mutagenesis and UV-vis, EPR, and resonance Raman spectroscopy has been implemented. All of the cysteine residues have individually been replaced by serine and two of them by alanine. Cysteine 14 could be replaced by either serine or alanine without any modification of the spectroscopic properties of the protein and was therefore dismissed as a ligand of the [2Fe-2S] cluster. The C56S, and C60S-mutated proteins were both found to display UV-vis, EPR, and resonance Raman spectra consistent with serine-coordinated [2Fe-2S] clusters. The C11S-mutated protein was considerably less stable than the wild type ferredoxin. This observation, together with the hypsochromic shifts of UV-visible absorption features upon cysteine 11-->serine mutation, suggested cysteine 11 to be a ligand of the [2Fe-2S] cluster. Cysteine 24 could be replaced by either serine or alanine without decreasing the stability of the protein and without dramatically changing its spectroscopic properties. Thus, either cysteine 24 is not a ligand of the [2Fe-2S] cluster or it is replaced by another ligand in the C24A mutated protein. A [2Fe-2S] cluster was also assembled in the C14A/C24A doubly mutated protein, i.e., in a polypeptide chain containing only three cysteine residues.2+ off
Single mutations of three amino acid residues in the vicinity of the primary electron donor, P, in the reaction center (RC) from Rhodobacter (Rb.) sphaeroides were constructed and characterized in order to study the effects of hydrogen-bonding on the physical properties of P. The mutations, Phe M197-->Tyr, Met L248-->Thr, and Ser L244-->Gly, represent single amino acid changes near P designed to introduce residues found in Rhodopseudomonas (Rps.) viridis and to, thus, probe the effects of nonconserved residues. The mutations were designed to change the nonconserved H-bonding interactions of P in Rb. sphaeroides, at the level of a C2 acetyl, a C9 keto, and a C10 ester carbonyl of P, respectively, to those present in Rps. viridis. The Fourier transform (pre)resonance Raman (FTRR) spectra of P, in its reduced and oxidized states, from reaction centers of these mutants were studied to determine modifications of H-bond interactions of the pi-conjugated C2 acetyl and C9 keto carbonyl groups and the C10 carbomethoxy ester carbonyl groups of P. The vibrational spectra of reduced P in the Met L248-->Thr and Ser L244-->Gly mutants reveal no evidence for changes in the H-bonding pattern of P; this suggests that for Rb. sphaeroides wild type, Ser L244 is not H-bonded to the C10 ester carbonyl of PL. The vibrational spectrum of reduced P from the Phe M197-->Tyr mutant compared to that of wild type can unambiguously be interpreted in terms of the formation of a new H-bond with an acetyl carbonyl of P, specifically PM. Correlating with the new H-bond, the Phe M197-->Tyr mutant exhibits an electronic absorption spectrum where the P absorption band is significantly perturbed. Intact cell and chromatophore photobleaching spectra of the same mutant indicate that the P absorption band has red-shifted by ca. 10 nm; no such behavior is observed for the other mutants. As well, the P-->BPheL electron transfer rate does not seem to strongly depend on the H-bonding of the C2 acetyl carbonyl of PM to a tyrosine residue. The EPR zero-field splitting parameters, E and D, of the primary donor triplet are only slightly modified in the mutant reaction centers, on the order of 1%.(ABSTRACT TRUNCATED AT 400 WORDS)
The low-frequency regions (150--700 cm-1) of resonance Raman (RR) spectra of various complexes of oxidized and reduced horse heart myoglobin were examined by use of 441.6-nm excitation. In this frequency range, RR spectra show 10 bands common to all myoglobin derivatives (numbered here for convenience from I to X). Relative intensities of bands IV, V, and X constitute good indicators of the doming state of the heme and, consequently, of the spin state of the iron atom. An additional band is present for several complexes (fluorometmyoglobin, hydroxymetmyoglobin, azidometmyoglobin, and oxymyoglobin). Isotopic substitutions on the exogenous ligands and of the iron atom (56Fe leads to 54Fe) allow us to assign these additional lines to the stretching vibrations of the Fe-sixth ligand bond. Similarly, bands II are assigned to stretching vibrations of the Fe-N-(pyrrole) bonds. An assignment of bands VI to stretching vibrations of the Fe-Nepsilon(proximal histidine) bonds is also proposed. Mechanisms for the resonance enhancement of the main low-frequency bands are discussed on the basis of the excitation profiles and of the dispersion curves for depolarization ratios obtained for fluorometmyoglobin and hydroxymetmyoglobin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.