We describe an algorithm that takes as input a complex sequence (un) given by a linear recurrence relation with polynomial coecients along with initial values, and outputs a simple explicit upper bound (vn) such that |un| ≤ vn for all n. Generically, the bound is tight, in the sense that its asymptotic behaviour matches that of un. We discuss applications to the evaluation of power series with guaranteed precision.
Abstract. A wide range of numerical methods exists for computing polynomial approximations of solutions of ordinary differential equations based on Chebyshev series expansions or Chebyshev interpolation polynomials. We consider the application of such methods in the context of rigorous computing (where we need guarantees on the accuracy of the result), and from the complexity point of view.It is well-known that the order-truncation of the Chebyshev expansion of a function over a given interval is a near-best uniform polynomial approximation of the function on that interval. In the case of solutions of linear differential equations with polynomial coefficients, the coefficients of the expansions obey linear recurrence relations with polynomial coefficients. Unfortunately, these recurrences do not lend themselves to a direct recursive computation of the coefficients, owing among other things to a lack of initial conditions.We show how they can nevertheless be used, as part of a validated process, to compute good uniform approximations of D-finite functions together with rigorous error bounds, and we study the complexity of the resulting algorithms. Our approach is based on a new view of a classical numerical method going back to Clenshaw, combined with a functional enclosure method.
Let S ⊂ R n be a compact basic semi-algebraic set defined as the real solution set of multivariate polynomial inequalities with rational coefficients. We design an algorithm which takes as input a polynomial system defining S and an integer p ⩾ 0 and returns the n-dimensional volume of S at absolute precision 2 −p .Our algorithm relies on the relationship between volumes of semi-algebraic sets and periods of rational integrals. It makes use of algorithms computing the Picard-Fuchs differential equation of appropriate periods, properties of critical points, and high-precision numerical integration of differential equations.The algorithm runs in essentially linear time with respect to p. This improves upon the previous exponential bounds obtained by Monte-Carlo or moment-based methods. Assuming a conjecture of Dimca, the arithmetic cost of the algebraic subroutines for computing Picard-Fuchs equations and critical points is singly exponential in n and polynomial in the maximum degree of the input.
We describe the main features of the Dynamic Dictionary of Mathematical Functions (version 1.5). It is a website consisting of interactive tables of mathematical formulas on elementary and special functions. The formulas are automatically generated by computer algebra routines. The user can ask for more terms of the expansions, more digits of the numerical values, or proofs of some of the formulas.
Mahler equations relate evaluations of the same function f at iterated bth powers of the variable. They arise in particular in the study of automatic sequences and in the complexity analysis of divide-and-conquer algorithms. Recently, the problem of solving Mahler equations in closed form has occurred in connection with number-theoretic questions. A difficulty in the manipulation of Mahler equations is the exponential blow-up of degrees when applying a Mahler operator to a polynomial. In this work, we present algorithms for solving linear Mahler equations for series, polynomials, and rational functions, and get polynomial-time complexity under a mild assumption. Incidentally, we develop an algorithm for computing the gcrd of a family of linear Mahler operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.