In this article, we compare and contrast the RASSCF, ONIOM and MMVB electronic structure methods for calculating relaxation paths on potential energy surfaces of the excited states of large molecules, and for locating any resulting conical intersections at which nonadiabatic decay can take place. Each method is treated here as an approximation to CASSCF, which we choose as our reference level of theory, but which becomes prohibitively expensive computationally for large molecules. Both MMVB and ONIOM are hybrid computational methods -combining different levels of theory in an energy plus derivatives calculation at a particular molecular geometry -but they differ fundamentally in that MMVB is a hybrid-atom method, whereas ONIOM is a hybrid-molecule method. We explain this distinction through four representative applications: the photostability of pyracylene (studied with CASSCF, RASSCF, MMVB); large geometry changes in the singlet excited states of triangulene (studied with MMVB); a model for interstitial nickel defects in a synthetic diamond lattice (studied with ONIOM CAS:UFF); and the photochemical [4+4] cycloaddition of cyclohexadiene to naphthalene (studied with ONIOM CAS:MMVB). We show that each method is more appropriate for a particular type of photochemical problem. This article is part perspective, part review, and contains new results for three multi-state or photoinduced processes in complex systems.
Rates of vibrational quenching of NO (v = 1-16) in collisions with a series of quenching species NO, NO2, N2O, He and Ar have been measured at 295 K. NO (v) was formed both by the O(1D) + N2O reaction and the 193 nm photolysis of NO(2), and time-resolved FTIR emission was used to follow the behaviour of the vibrationally excited species. The trends in quenching rate constants can be explained in terms of V-T transfer, V-V transfer and by the effects of competing processes. He and Ar show trends expected from SSH theory, but with relaxation rates that are considerably higher than those expected from previous studies with closed shell molecules, and the influence of non-adiabatic pathways in the relaxation of the NO 2Pi state is discussed. Relaxation with NO2 shows the influence of resonant energy transfer to the nu3 mode, with rate constants peaking at v = 10. For N2O, relaxation rates show essentially a linear increase with v. A linear increase is expected for the change of the transition moment with v for the harmonic oscillator approximation, and when this is taken into account the "reduced probabilities" (defined as P/v, where P is probability of a gas kinetic collision changing the vibrational level from v to v-1) are approximately independent of the energy lost in the NO molecule. The influence of complex formation far from resonance is invoked in both this and for quenching of low vibrational levels by NO2. Finally, self-quenching shows rates which initially decrease with increasing v, but then show a marked increase, with a minimum value at v = 9. Both V-V and V-T processes are believed to occur. Where previously published data are available, general agreement is observed in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.