In light of energy and climate targets, free cooling unlocks a major resource-saving potential compared to refrigeration. To fill the knowledge gap in quantifying this saving potential, we aim to specify the physical and technical limits of cooling tower applications and provide comprehensive data on electricity and water consumption. For this purpose, we distinguish six types of package-type cooling towers: dry, closed wet, open wet, and three types of hybrid systems; defining one generalized system for all types enables comparability. Subsequently, we collect data from 6730 system models of 27 manufacturers, using technical information from data sheets and additional material. The analysis reveals, for example, specific ranges of electricity demand from 0.01 to 0.06 kWel/kWth and highlights influencing factors, including type and operating point. Refrigeration systems would consume approximately ten times more electricity per cooling capacity. Furthermore, the evaluation demonstrates the functional limits, for example, the minimum cooling temperatures. Minimum outlet temperatures using evaporative cooling are up to 16 K lower than for dry cooling. The collected data have crucial implications for designing and optimizing cooling systems, including potential analysis of free cooling and efficiency assessment of cooling towers in operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.