Small-angle X-ray scattering (SAXS) is used to demonstrate the presence of density fluctuations in ambient water on a physical length-scale of Ϸ1 nm; this is retained with decreasing temperature while the magnitude is enhanced. In contrast, the magnitude of fluctuations in a normal liquid, such as CCl4, exhibits no enhancement with decreasing temperature, as is also the case for water from molecular dynamics simulations under ambient conditions. Based on X-ray emission spectroscopy and X-ray Raman scattering data we propose that the density difference contrast in SAXS is due to fluctuations between tetrahedral-like and hydrogen-bond distorted structures related to, respectively, low and high density water. We combine our experimental observations to propose a model of water as a temperature-dependent, fluctuating equilibrium between the two types of local structures driven by incommensurate requirements for minimizing enthalpy (strong near-tetrahedral hydrogen-bonds) and maximizing entropy (nondirectional H-bonds and disorder). The present results provide experimental evidence that the extreme differences anticipated in the hydrogen-bonding environment in the deeply supercooled regime surprisingly remain in bulk water even at conditions ranging from ambient up to close to the boiling point.density fluctuations ͉ liquid-liquid hypothesis ͉ small angle X-ray scattering ͉ water structure ͉ X-ray spectroscopy L iquid water shows many anomalies in its thermodynamic properties such as compressibility, density variation and heat capacity (1-4). In the low-temperature regime, below the freezing point, these properties deviate strongly from normal and theories, related to a liquid-liquid phase transition between high and low density water, have been proposed to account for these anomalies (5). Although the anomalies are extreme in the supercooled region they are also present at ambient conditions where most of waters' physical, chemical and biological processes of importance occur. In contrast, water at ambient conditions has traditionally been considered as a homogeneous distribution of near-tetrahedral hydrogen-bonded (H-bonded) structures with thermal fluctuations increasing with temperature. This picture has been challenged by recent studies based on X-ray Raman (XRS) and conventional X-ray absorption spectroscopy (XAS) (6), and X-ray emission spectroscopy (XES) (7), suggesting two distinct local structures with tetrahedral as a minority and a highly hydrogen-bond (H-bond) distorted asymmetrical as the majority. In particular the proposed predominant asymmetrical structure has caused intense debate in the last years (see refs. 7 and 8 for detailed discussion).SAXS and small-angle neutron scattering (SANS) provide the most direct probes of density variations or fluctuations on large length scales in a liquid. Through an enhancement of the structure factor at low momentum transfer, Q, small deviations from the average electron density at different length scales can be reliably identified (9). Previous SAXS studies of w...
Summary Members of the interleukin-1 (IL-1) family of cytokines play major roles in host defense and immune system regulation in infectious and inflammatory diseases. IL-1 cytokines trigger a biological response in effector cells by assembling a heterotrimeric signaling complex with two IL-1 receptor chains, a high-affinity primary receptor and a low-affinity co-receptor. To gain insights into the signaling mechanism of the novel IL-1-like cytokine IL-33, we first solved its solution structure and then performed a detailed biochemical and structural characterization of the interaction between IL-33, its primary receptor ST2 and the co-receptor IL-1RAcP. Using NMR data, we obtained a model of the IL-33/ST2 complex in solution that is validated by small-angle X-ray scattering (SAXS) data and is similar to the IL-1β/IL-1R1 complex. We extended our SAXS analysis to the IL-33/ST2/IL-1RAcP and IL-1β/IL-1R1/IL-1RAcP complexes and propose a general model of the molecular architecture of IL-1 ternary signaling complexes.
Beamline 4‐2 at the Stanford Synchrotron Radiation Laboratory is a small‐angle X‐ray scattering/diffraction facility dedicated to structural studies on mostly noncrystalline biological systems. The instrument consists of a pinhole camera, which covers the magnitude of the scattering vector Q in the range 0.004–1.3 Å−1 [Q = (4π/λ)sin θ, where θ and λ are one half of the scattering angle and the X‐ray wavelength, respectively], and a Bonse–Hart geometry ultra‐small‐angle X‐ray scattering setup for the Q range an order of magnitude smaller. The pinhole camera allows quick automated distance and detector selection among any combination of five distances and three position‐sensitive detectors. The double‐crystal monochromator can have either Si 111 crystals or a pair of synthetic multilayer diffractive elements for higher flux applications. We have adopted a suite of software originally developed for macromolecular crystallography for integrated beamline control as well as static and slow time‐resolved small‐angle scattering data collection. This article outlines recent technological developments and specialized instrumentation for conducting noncrystalline scattering experiments in structural biology at improved time and spatial resolutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.