The Communication describes a textile-based wearable multi-ion potentiometric sensor array. The printed flexible sensors operate favorably under extreme mechanical strains (that reflect daily activity) while offering attractive real-time non-invasive monitoring of electrolytes such as sodium and potassium.
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.
A new analytical all-solid-state platform for intradermal potentiometric detection of potassium in interstitial fluid is presented here. Solid microneedles are modified with different coatings and polymeric membranes to prepare both the potassium-selective electrode and reference electrode needed for the potentiometric readout. These microneedle-based electrodes are fixed in an epidermal patch suitable for insertion into the skin. The analytical performances observed for the potentiometric cell (Nernstian slope, limit of detection of 10 −4.9 potassium activity, linear range of 10 −4.2 to 10 −1.1 , drift of 0.35 ± 0.28 mV h −1 ), together with a fast response time, adequate selectivity, and excellent reproducibility and repeatability, are appropriate for potassium analysis in interstitial fluid within both clinical and harmful levels. The potentiometric response is maintained after several insertions into animal skin, confirming the resiliency of the microneedle-based sensor. Ex vivo tests based on the intradermal detection of potassium in chicken and porcine skin demonstrate that the microneedle patch is suitable for monitoring potassium changes inside the skin. In addition, the dimensions of the microneedles modified with the corresponding layers necessary to enhance robustness and provide sensing capabilities (1000 μm length, 45°tip angle, 15 μm thickness in the tip, and 435 μm in the base) agree with the required ranges for a painless insertion into the skin. In vitro cytotoxicity experiments showed that the patch can be used for at least 24 h without any side effect for the skin cells. Overall, the developed concept constitutes important progress in the intradermal analysis of ions related to an electrolyte imbalance in humans, which is relevant for the control of certain types of diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.