Bhat p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p85 Breaking Waves in Deep and Intermediate Waters Marc Perlin, Wooyoung Choi, and Zhigang Tian p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p 115 Balance and Spontaneous Wave Generation in Geophysical Flows J.
An experimental study of energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model to simulate the dissipation due to wave breaking are reported in this paper. Measured wave surface elevations are used to examine the characteristic time and length scales associated with wave groups and local breaking waves, and to estimate and parameterize the energy dissipation and dissipation rate due to wave breaking. Numerical tests using the eddy viscosity model are performed and we find that the numerical results well capture the measured energy loss. In our experiments, three sets of characteristic time and length scales are defined and obtained: global scales associated with the wave groups, local scales immediately prior to breaking onset and post-breaking scales. Correlations among these time and length scales are demonstrated. In addition, for our wave groups, wave breaking onset predictions using the global and local wave steepnesses are found based on experimental results. Breaking time and breaking horizontal length scales are determined with high-speed imaging, and are found to depend approximately linearly on the local wave steepness. The two scales are then used to determine the energy dissipation rate, which is the ratio of the energy loss to the breaking time scale. Our experimental results show that the local wave steepness is highly correlated with the measured dissipation rate, indicating that the local wave steepness may serve as a good wave-breaking-strength indicator. To simulate the energy dissipation due to wave breaking, a simple eddy viscosity model is proposed and validated with our experimental measurements. Under the small viscosity assumption, the leading-order viscous effect is incorporated into the free-surface boundary conditions. Then, the kinematic viscosity is replaced with an eddy viscosity to account for energy loss. The breaking time and length scales, which depend weakly on wave breaking strength, are applied to evaluate the magnitude of the eddy viscosity using dimensional analysis. The estimated eddy viscosity is of the order of 10 −3 m 2 s −1 and demonstrates a strong dependence on wave breaking strength. Numerical simulations with the eddy viscosity estimation are performed to compare to the experimental results. Good agreement as regards energy dissipation due to wave breaking and surface profiles after wave breaking is achieved, which illustrates that the simple eddy viscosity model functions effectively. † Email address for correspondence: perlin@umich.edu 218 Z. Tian, M. Perlin and W. Choi
To investigate the phenomena of skin-friction drag reduction in a turbulent boundary layer (TBL) at large scales and high Reynolds numbers, a set of experiments has been conducted at the US Navy's William B. Morgan Large Cavitation Channel (LCC). Drag reduction was achieved by injecting gas (air) from a line source through the wall of a nearly zero-pressure-gradient TBL that formed on a flat-plate test model that was either hydraulically smooth or fully rough. Two distinct drag-reduction phenomena were investigated; bubble drag reduction (BDR) and air-layer drag reduction (ALDR).The streamwise distribution of skin-friction drag reduction was monitored with six skin-friction balances at downstream-distance-based Reynolds numbers to 220 million and at test speeds to 20.0ms−1. Near-wall bulk void fraction was measured at twelve streamwise locations with impedance probes, and near-wall (0 < Y < 5mm) bubble populations were estimated with a bubble imaging system. The instrument suite was used to investigate the scaling of BDR and the requirements necessary to achieve ALDR.Results from the BDR experiments indicate that: significant drag reduction (>25%) is limited to the first few metres downstream of injection; marginal improvement was possible with a porous-plate versus an open-slot injector design; BDR has negligible sensitivity to surface tension; bubble size is independent of surface tension downstream of injection; BDR is insensitive to boundary-layer thickness at the injection location; and no synergetic effect is observed with compound injection. Using these data, previous BDR scaling methods are investigated, but data collapse is observed only with the ‘initial zone’ scaling, which provides little information on downstream persistence of BDR.ALDR was investigated with a series of experiments that included a slow increase in the volumetric flux of air injected at free-stream speeds to 15.3ms−1. These results indicated that there are three distinct regions associated with drag reduction with air injection: Region I, BDR; Region II, transition between BDR and ALDR; and Region III, ALDR. In addition, once ALDR was established: friction drag reduction in excess of 80% was observed over the entire smooth model for speeds to 15.3ms−1; the critical volumetric flux of air required to achieve ALDR was observed to be approximately proportional to the square of the free-stream speed; slightly higher injection rates were required for ALDR if the surface tension was decreased; stable air layers were formed at free-stream speeds to 12.5ms−1 with the surface fully roughened (though approximately 50% greater volumetric air flux was required); and ALDR was sensitive to the inflow conditions. The sensitivity to the inflow conditions can be mitigated by employing a small faired step (10mm height in the experiment) that helps to create a fixed separation line.
Turbulent boundary layer skin friction in liquid flows may be reduced when bubbles are present near the surface on which the boundary layer forms. Prior experimental studies of this phenomenon reached downstream-distance-based Reynolds numbers ($Re_{x}$) of several million, but potential applications may occur at $Re_{x}$ orders of magnitude higher. This paper presents results for $Re_{x}$ as high as 210 million from skin-friction drag-reduction experiments conducted in the USA Navy's William B. Morgan Large Cavitation Channel (LCC). Here, a near-zero-pressure-gradient flat-plate turbulent boundary layer was generated on a 12.9 m long hydraulically smooth flat plate that spanned the 3 m wide test section. The test surface faced downward and air was injected at volumetric rates as high as 0.38 m$^{3}$ s$^{-1}$ through one of two flush-mounted 40 $\mu$m sintered-metal strips that nearly spanned the test model at upstream and downstream locations. Spatially and temporally averaged shear stress and bubble-image-based measurements are reported here for nominal test speeds of 6, 12 and 18 m s$^{-1}$. The mean bubble diameter was $\sim$300 $\mu$m. At the lowest test speed and highest air injection rate, buoyancy pushed the air bubbles to the plate surface where they coalesced to form a nearly continuous gas film that persisted to the end of the plate with near-100% skin-friction drag reduction. At the higher two flow speeds, the bubbles generally remained distinct and skin-friction drag reduction was observed when the bubbly mixture was closer to the plate surface than 300 wall units of the boundary-layer flow without air injection, even when the bubble diameter was more than 100 of these wall units. Skin-friction drag reduction was lost when the near-wall shear induced the bubbles to migrate from the plate surface. This bubble-migration phenomenon limited the persistence of bubble-induced skin-friction drag reduction to the first few metres downstream of the air injector in the current experiments.
Mild to steep standing waves of the fundamental mode are generated in a narrow rectangular cylinder undergoing vertical oscillation with forcing frequencies of 3.15 Hz to 3.34 Hz. A precise, non-intrusive optical wave profile measurement system is used along with a wave probe to accurately quantify the spatial and temporal surface elevations. These standing waves are also simulated by a two-dimensional spectral Cauchy integral code. Experiments show that contact-line effects increase the viscous natural frequency and alter the neutral stability curves. Hence, as expected, the addition of the wetting agent Photo Flo significantly changes the stability curve and the hysteresis in the response diagram. Experimentally, we find strong modulations in the wave amplitude for some forcing frequencies higher than 3.30 Hz. Reducing contact-line effects by Photo-Flo addition suppresses these modulations. Perturbation analysis predicts that some of this modulation is caused by noise in the forcing signal through ‘sideband resonance’, i.e. the introduction of small sideband forcing can generate large modulations of the Faraday waves. The analysis is verified by our numerical simulations and physical experiments. Finally, we observe experimentally a new form of steep standing wave with a large symmetric double-peaked crest, while simulation of the same forcing condition results in a sharper crest than seen previously. Both standing wave forms appear at a finite wave steepness far smaller than the maximum steepness for the classical standing wave and a surface tension far smaller than that for a Wilton ripple. In both physical and numerical experiments, a stronger second harmonic (in time) and temporal asymmetry in the wave forms suggest a 1:2 resonance due to a non-conventional quartet interaction. Increasing wave steepness leads to a new form of breaking standing waves in physical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.