International audienceCombining molecular dynamics simulations with user interaction would have various applications in both education and research. By enabling interactivity the scientist will be able to visualize the experiment in real time and drive the simulation to a desired state more easily. However, interacting with systems of interesting size requires significant computing resources due to the complexity of the simulation. In this paper, we propose an approach to combine a classical parallel molecular dynamics simulator, Gromacs, to a 3D virtual reality environment allowing to steer the simulation through external user forces applied with an haptic device to a selection of atoms. We specifically focused on minimizing the intrusion in the simulator code, on efficient parallel data extraction and filtering to transfer only the necessary data to the visualization environment, and on a controlled asynchronism between various components to improve interactivity. We managed to steer molecular systems of 1.7 M atoms at about 25 Hz using 384 CPU cores. This framework allowed us to study a concrete scientific problem by testing one hypothesis of the transport of an iron complex from the exterior of the bacteria to the periplasmic space through the FepA membrane protein
The amount of data generated by molecular dynamics simulations of large molecular assemblies and the sheer size and complexity of the systems studied call for new ways to analyse, steer and interact with such calculations. Traditionally, the analysis is performed off-line once the huge amount of simulation results have been saved to disks, thereby stressing the supercomputer I/O systems, and making it increasingly difficult to handle post-processing and analysis from the scientist's office. The ExaViz framework is an alternative approach developed to couple the simulation with analysis tools to process the data as close as possible to their source of creation, saving a reduced, more manageable and pre-processed data set to disk. ExaViz supports a large variety of analysis and steering scenarios. Our framework can be used for live sessions (simulations short enough to be fully followed by the user) as well as batch sessions (long-time batch executions). During interactive sessions, at runtime, the user can display plots from analysis, visualise the molecular system and steer the simulation with a haptic device. We also emphasise how a CAVE-like immersive environment could be used to leverage such simulations, offering a large display surface to view and intuitively navigate the molecular system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.