Abstract-The cardiac electrical system is designed to ensure the appropriate rate and timing of contraction in all regions of the heart, which are essential for effective cardiac function. Well-controlled cardiac electrical activity depends on specialized properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Cardiac electrical specialization was first recognized in the mid 1800s, but over the past 15 years, an enormous amount has been learned about how specialization is achieved by differential expression of cardiac ion channels. More recently, many aspects of the molecular basis have been revealed. Although the field is potentially vast, an appreciation of key elements is essential for any clinician or researcher wishing to understand modern cardiac electrophysiology. This article reviews the major regionally determined features of cardiac electrical function, discusses underlying ionic bases, and summarizes present knowledge of ion channel subunit distribution in relation to functional specialization. Key Words: ion channels Ⅲ molecular biology Ⅲ conduction Ⅲ cardiac arrhythmias Ⅲ antiarrhythmic drugs C ardiac function depends on the appropriate timing of contraction in various regions, as well as on appropriate heart rate. To subserve these functions, electrical activity in each region is adapted to its specialized function. Regionally specialized cardiac electrical function was recognized in the mid 1800s, when Stannius 1 demonstrated that ligatures in the superior vena caval sinus region of the frog caused cardiac asystole, with the sinus continuing to beat. With the widespread application to cardiac ion channel study of patchclamp methodologies in the 1980s and molecular biology in the 1990s, many underlying mechanisms have been unraveled. The present article reviews the major regionally determined features of cardiac electrical function and the present knowledge regarding ionic and molecular bases. Overview of Regional Functional SpecificityFigure 1 illustrates typical regional action potential (AP) properties in the heart. The normal cardiac impulse originates in the sinoatrial node (SAN) and propagates through the atria to reach the atrioventricular node (AVN). From the AVN, electrical activity passes rapidly through the cable-like HisPurkinje system to reach the ventricles, triggering cardiac pumping action. Figure 2 shows the ionic currents involved in a schematic cardiac AP, provides standard abbreviations for currents and their corresponding subunits, and summarizes principal localization data discussed elsewhere in the present review. Ionic and Molecular Basis of Functional Specificity Sinoatrial Node Cellular Electrophysiology and FunctionThe SAN, located in the right atrial (RA) roof between the venae cavae, 2 is specialized for physiological pacemaker function. Heart rate control is achieved through autonomic regulation of SAN pacemaking. SAN APs have a relatively positive maximum diastolic potential (MDP...
Vernakalant (RSD1235) is an investigational drug recentlyshown to convert atrial fibrillation rapidly and safely in patients (J Am Coll Cardiol 44:2355-2361. Here, the molecular mechanisms of interaction of vernakalant with the inner pore of the Kv1.5 channel are compared with those of the class IC agent flecainide. Initial experiments showed that vernakalant blocks activated channels and vacates the inner vestibule as the channel closes, and thus mutations were made, targeting residues at the base of the selectivity filter and in S6, by drawing on studies of other Kv1.5-selective blocking agents. Block by vernakalant or flecainide of Kv1.5 wild type and mutants was assessed by whole-cell patch-clamp experiments in transiently transfected human embryonic kidney 293 cells. The mutational scan identified several highly conserved amino acids, Thr479, Thr480, Ile502, Val505, and Val508, as important residues for affecting block by both compounds. In general, mutations in S6 increased the IC 50 for block by vernakalant; I502A caused an extremely local 25-fold decrease in potency. Specific changes in the voltage-dependence of block with I502A supported the crucial role of this position. A homology model of the pore region of Kv1.5 predicted that, of these residues, only Thr479, Thr480, Val505, and Val508 are potentially accessible for direct interaction, and that mutation at additional sites studied may therefore affect block through allosteric mechanisms. For some of the mutations, the direction of changes in IC 50 were opposite for vernakalant and flecainide, highlighting differences in the forces that drive drug-channel interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.