We present the Limited-range Online Routing Problem (LORP), which involves a team of Unmanned Aerial Vehicles (UAVs) with limited communication range that must autonomously coordinate to service task requests. We first show a general approach to cast this dynamic problem as a sequence of decentralized task allocation problems. Then we present two solutions both based on modeling the allocation task as a Markov Random Field to subsequently assess decisions by means of the decentralized Max-Sum algorithm. Our first solution assumes independence between requests, whereas our second solution also considers the UAVs' workloads. A thorough empirical evaluation shows that our workloadbased solution consistently outperforms current state-of-the-art methods in a wide range of scenarios, lowering the average service time up to 16%. In the bestcase scenario there is no gap between our decentralized solution and centralized techniques. In the worst-case scenario we manage to reduce by 25% the gap between current decentralized and centralized techniques. Thus, our solution becomes the method of choice for our problem.
ABC4MAS provides an environment to support the rapid assembly of agent-oriented business collaborations. ABC4MAS allows: (i) to set up a collaboration environment (CE) as a virtual organisation; (ii) to reach agreements within the CE to form short-term business collaborations; (iii) to enact business collaborations; and (iv) to track the performance of agents within business collaborations to build their trust and reputation within the CE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.