Zebrafish semaphorin 1b (sema Z1b) is a new member of the semaphorin family, related to mammalian sema D/III. It is expressed in rhombomeres three and five, and in the posterior half of newly formed somites which is avoided by ventrally extending motor axons. Embryos injected at the 1-2 cell stage with synthetic sema Z1b mRNA developed normally but many (63%) showed missing or severely stunted ventral motor nerves. Other axons, somites, and hindbrain rhombomeres were not affected. No abnormalities were seen in control embryos injected with lacZ mRNA. Sema Z1b might normally influence the midsegmental pathway choice of the ventrally extending motor axons by contributing to a repulsive domain in the posterior somite.
The differentiation of mouse lens epithelial cells into fiber cells is a useful model for studying the changes of the electrical properties of gap junction (cell-to-cell) channels that are induced by an alteration in connexin expression patterns. In this model, cuboidal lens epithelial cells differentiate into elongated fiber cells, and the expression of connexin43 (Cx43) in the epithelial cells is replaced with the production of high levels of Cx50 and Cx46 in the fiber cells. We now report a new procedure to isolate mouse lens fiber cell pairs suitable for double whole cell patch-clamp analysis. Analysis was also performed for fiberlike cell pairs differentiated from epithelial cells in culture. Voltage dependence and unitary conductance of fiber cell gap junction channels were determined and compared with the corresponding values previously measured for the channels joining lens epithelial cells and for lens connexin channels formed in Xenopus oocyte pairs. Our results support a differentiation-induced shift toward stronger gap junctional voltage dependence and larger unitary conductances in the fiber cells. Our data further reflect a balanced functional contribution of Cx50 and Cx46 in the fiber cell-to-cell channels rather than a predominance of a single connexin.
Recent advances in understanding lens fiber gap junction formation are reviewed. These include studies of junctional protein expression in the embryonic lens, and of age related changes affecting gap junction structure and composition in the adult lens. An in vitro assembly system based on detergent solubilized pore complexes and endogenous lipids has been developed to provide information on the molecular interactions involved in gap junction formation and to provide material for structure analysis. Important information on the electrical properties of lens gap junction channels is obtained using electrophysiological techniques including planar lipid bilayer analysis and patch clamping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.